The effect of enzymes on the in vitro degradation behavior of Mg alloy wires in simulated gastric fluid and intestinal fluid

With an upsurge of biodegradable metal implants, the research and application of Mg alloys in the gastrointestinal environment of the digestive tract have been of great interest. Digestive enzymes, mainly pepsin in the stomach and pancreatin in the small intestine, are widespread in the gastrointest...

Full description

Bibliographic Details
Main Authors: Yue Zhang, Jian Cao, Xianli Wang, Huan Liu, Yi Shao, Chenglin Chu, Feng Xue, Jing Bai
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2022-01-01
Series:Bioactive Materials
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2452199X2100267X
Description
Summary:With an upsurge of biodegradable metal implants, the research and application of Mg alloys in the gastrointestinal environment of the digestive tract have been of great interest. Digestive enzymes, mainly pepsin in the stomach and pancreatin in the small intestine, are widespread in the gastrointestinal tract, but their effect on the degradation of Mg alloys has not been well understood. In this study, we investigated the impacts of pepsin and pancreatin on the degradation of Mg-2Zn alloy wires. The results showed that the pepsin and pancreatin had completely different even the opposite effects on the degradation of Mg, although they both affected the degradation product layer. The degradation rate of Mg wire declined with the addition of pepsin in simulated gastric fluid (SGF) but rose with the addition of pancreatin in simulated intestinal fluid (SIF). The opposite trends in degradation rate also resulted in completely different degradation morphologies in wires surface, where the pitting corrosion in SGF was inhibited because of the physical barrier effect of pepsin adsorption. In contrast, the adsorption of pancreatin affected the integrity of magnesium hydrogen phosphate film, causing a relatively uneven degraded surface. These results may help us to understand the role of different digestive enzymes in the degradation of magnesium and facilitate the development and clinical application of magnesium alloy implanted devices for the digestive tract.
ISSN:2452-199X