Numerical study and stability of the Lengyel–Epstein chemical model with diffusion

Abstract In this paper, a nonlinear mathematical model with diffusion is taken into account to review the dynamics of Lengyel–Epstein chemical reaction model to describe the oscillating chemical reactions. For this purpose, the dimensionless Lengyel–Epstein model with diffusion and homogeneous bound...

Full description

Bibliographic Details
Main Authors: Zain Ul Abadin Zafar, Zahir Shah, Nigar Ali, Poom Kumam, Ebraheem O. Alzahrani
Format: Article
Language:English
Published: SpringerOpen 2020-08-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-020-02877-6
Description
Summary:Abstract In this paper, a nonlinear mathematical model with diffusion is taken into account to review the dynamics of Lengyel–Epstein chemical reaction model to describe the oscillating chemical reactions. For this purpose, the dimensionless Lengyel–Epstein model with diffusion and homogeneous boundary condition is considered. The steady states with and without diffusion of the Lengyel–Epstein model are studied. The basic reproductive number is computed and the global steady states for the system are calculated. Numerical results are offered for two systems using three well known techniques to validate the main outcomes. The consequences established from this qualitative study are supported by numerical simulations characterized by distinct programs, adopting forward Euler method, Crank–Nicolson method, and nonstandard finite difference method.
ISSN:1687-1847