Synthesis of Binary Bi2S3/ZnO Nanorod Array Heterostructure and Their Photoelectrochemical Performance
One of the most effective strategies to improve the photoconversion efficiency in the photoelectrochemical cell is by using an assembly of heterostructures. To do so, a simple and inexpensive method, that is successive ionic layer adsorption and reaction (SILAR), is used to deposit the narrow band g...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Journal of Nanomaterials |
Online Access: | http://dx.doi.org/10.1155/2019/5212938 |
id |
doaj-5e4dbf963cbe4a3a96eff804e0b41673 |
---|---|
record_format |
Article |
spelling |
doaj-5e4dbf963cbe4a3a96eff804e0b416732020-11-24T22:12:41ZengHindawi LimitedJournal of Nanomaterials1687-41101687-41292019-01-01201910.1155/2019/52129385212938Synthesis of Binary Bi2S3/ZnO Nanorod Array Heterostructure and Their Photoelectrochemical PerformanceAsla A. AL-Zahrani0Zulkarnain Zainal1Zainal Abidin Talib2Hong Ngee Lim3Laimy Mohd Fudzi4Araa Mebdir Holi5Mahanim Sarif @ Mohd Ali6Imam Abdulrahman Bin Faisal University, Eastern Region, Dammam, Saudi ArabiaDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, MalaysiaDepartment of Physics, Faculty of Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, MalaysiaDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, MalaysiaMaterials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, MalaysiaDepartment of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Al-Qadisiyah 58002, IraqMaterials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, MalaysiaOne of the most effective strategies to improve the photoconversion efficiency in the photoelectrochemical cell is by using an assembly of heterostructures. To do so, a simple and inexpensive method, that is successive ionic layer adsorption and reaction (SILAR), is used to deposit the narrow band gap energy semiconductor Bi2S3 on ZnO nanorod arrays (NRAs) at different SILAR cycles. The obtained binary heterostructure thin films were characterized by using X-ray diffraction (XRD), UV-Vis Spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and linear sweep voltammogram (LSV) to prove the crystal structure, optical properties, band gap energy, morphological structure, composition of elements, and electrical properties. The XRD revealed that ZnO NRAs possessed a single wurtzite crystal structure while Bi2S3 possessed an orthorhombic crystal structure. The as-fabricated Bi2S3/ZnO heterostructure exhibited enhanced visible light absorption and charge separation efficiency of photoinduced electron-hole pairs. The band gap energy of binary heterostructure Bi2S3/ZnO NRAs is 3.11, 3.00, 2.33, 1.96, and 1.89 eV at 3, 5, 7, 9, and 11 SILAR cycles, respectively, confirming the substantial improvement of ZnO NRA optical properties. The highest photocurrent density has been achieved by 1.92 mA/cm2 of Bi2S3/ZnO NRAs fabricated at 7 cycles, exhibiting sixfold enhancement compared to that of intrinsic ZnO NRAs (0.336 mA/cm2). This impressive enhancement was ascribed to the significant improvement in morphological structure, crystallinity, and optical properties of heterostructure photoanodes. Significant improvement was achieved in the photoelectrochemical cell (PEC) performance attributed to the fast separation, low recombination rate, and low impedance of the photoinduced electron-hole pairs as shown throughout the electrochemical impedance spectra.http://dx.doi.org/10.1155/2019/5212938 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Asla A. AL-Zahrani Zulkarnain Zainal Zainal Abidin Talib Hong Ngee Lim Laimy Mohd Fudzi Araa Mebdir Holi Mahanim Sarif @ Mohd Ali |
spellingShingle |
Asla A. AL-Zahrani Zulkarnain Zainal Zainal Abidin Talib Hong Ngee Lim Laimy Mohd Fudzi Araa Mebdir Holi Mahanim Sarif @ Mohd Ali Synthesis of Binary Bi2S3/ZnO Nanorod Array Heterostructure and Their Photoelectrochemical Performance Journal of Nanomaterials |
author_facet |
Asla A. AL-Zahrani Zulkarnain Zainal Zainal Abidin Talib Hong Ngee Lim Laimy Mohd Fudzi Araa Mebdir Holi Mahanim Sarif @ Mohd Ali |
author_sort |
Asla A. AL-Zahrani |
title |
Synthesis of Binary Bi2S3/ZnO Nanorod Array Heterostructure and Their Photoelectrochemical Performance |
title_short |
Synthesis of Binary Bi2S3/ZnO Nanorod Array Heterostructure and Their Photoelectrochemical Performance |
title_full |
Synthesis of Binary Bi2S3/ZnO Nanorod Array Heterostructure and Their Photoelectrochemical Performance |
title_fullStr |
Synthesis of Binary Bi2S3/ZnO Nanorod Array Heterostructure and Their Photoelectrochemical Performance |
title_full_unstemmed |
Synthesis of Binary Bi2S3/ZnO Nanorod Array Heterostructure and Their Photoelectrochemical Performance |
title_sort |
synthesis of binary bi2s3/zno nanorod array heterostructure and their photoelectrochemical performance |
publisher |
Hindawi Limited |
series |
Journal of Nanomaterials |
issn |
1687-4110 1687-4129 |
publishDate |
2019-01-01 |
description |
One of the most effective strategies to improve the photoconversion efficiency in the photoelectrochemical cell is by using an assembly of heterostructures. To do so, a simple and inexpensive method, that is successive ionic layer adsorption and reaction (SILAR), is used to deposit the narrow band gap energy semiconductor Bi2S3 on ZnO nanorod arrays (NRAs) at different SILAR cycles. The obtained binary heterostructure thin films were characterized by using X-ray diffraction (XRD), UV-Vis Spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and linear sweep voltammogram (LSV) to prove the crystal structure, optical properties, band gap energy, morphological structure, composition of elements, and electrical properties. The XRD revealed that ZnO NRAs possessed a single wurtzite crystal structure while Bi2S3 possessed an orthorhombic crystal structure. The as-fabricated Bi2S3/ZnO heterostructure exhibited enhanced visible light absorption and charge separation efficiency of photoinduced electron-hole pairs. The band gap energy of binary heterostructure Bi2S3/ZnO NRAs is 3.11, 3.00, 2.33, 1.96, and 1.89 eV at 3, 5, 7, 9, and 11 SILAR cycles, respectively, confirming the substantial improvement of ZnO NRA optical properties. The highest photocurrent density has been achieved by 1.92 mA/cm2 of Bi2S3/ZnO NRAs fabricated at 7 cycles, exhibiting sixfold enhancement compared to that of intrinsic ZnO NRAs (0.336 mA/cm2). This impressive enhancement was ascribed to the significant improvement in morphological structure, crystallinity, and optical properties of heterostructure photoanodes. Significant improvement was achieved in the photoelectrochemical cell (PEC) performance attributed to the fast separation, low recombination rate, and low impedance of the photoinduced electron-hole pairs as shown throughout the electrochemical impedance spectra. |
url |
http://dx.doi.org/10.1155/2019/5212938 |
work_keys_str_mv |
AT aslaaalzahrani synthesisofbinarybi2s3znonanorodarrayheterostructureandtheirphotoelectrochemicalperformance AT zulkarnainzainal synthesisofbinarybi2s3znonanorodarrayheterostructureandtheirphotoelectrochemicalperformance AT zainalabidintalib synthesisofbinarybi2s3znonanorodarrayheterostructureandtheirphotoelectrochemicalperformance AT hongngeelim synthesisofbinarybi2s3znonanorodarrayheterostructureandtheirphotoelectrochemicalperformance AT laimymohdfudzi synthesisofbinarybi2s3znonanorodarrayheterostructureandtheirphotoelectrochemicalperformance AT araamebdirholi synthesisofbinarybi2s3znonanorodarrayheterostructureandtheirphotoelectrochemicalperformance AT mahanimsarifmohdali synthesisofbinarybi2s3znonanorodarrayheterostructureandtheirphotoelectrochemicalperformance |
_version_ |
1725802821306023936 |