Recovering Secrets From Prefix-Dependent Leakage
We discuss how to recover a secret bitstring given partial information obtained during a computation over that string, assuming the computation is a deterministic algorithm processing the secret bits sequentially. That abstract situation models certain types of side-channel attacks against discrete...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2020-06-01
|
Series: | Journal of Mathematical Cryptology |
Subjects: | |
Online Access: | https://doi.org/10.1515/jmc-2015-0048 |
id |
doaj-5e292d07eb0a4f6388e5c1a9f335f895 |
---|---|
record_format |
Article |
spelling |
doaj-5e292d07eb0a4f6388e5c1a9f335f8952021-09-06T19:40:44ZengDe GruyterJournal of Mathematical Cryptology1862-29761862-29842020-06-01141152410.1515/jmc-2015-0048jmc-2015-0048Recovering Secrets From Prefix-Dependent LeakageFerradi Houda0Géraud Rémi1Guilley Sylvain2Naccache David3Tibouchi Mehdi4NTT Secure Platform Laboratories 3–9–11 Midori-cho, Musashino-shi, Tokyo 180–8585, JapanÉcole normale supérieure, Computer Science Department, 45 rue d’Ulm, 75230, Paris Cedex, 05, FranceTelecom-ParisTech, Comelec Dept., 46 rue Barrault, F-75634, Paris Cedex, 13, FranceÉcole normale supérieure, Computer Science Department, 45 rue d’Ulm, 75230, Paris Cedex, 05, FranceNTT Secure Platform Laboratories 3–9–11 Midori-cho, Musashino-shi, Tokyo 180–8585, JapanWe discuss how to recover a secret bitstring given partial information obtained during a computation over that string, assuming the computation is a deterministic algorithm processing the secret bits sequentially. That abstract situation models certain types of side-channel attacks against discrete logarithm and RSA-based cryptosystems, where the adversary obtains information not on the secret exponent directly, but instead on the group or ring element that varies at each step of the exponentiation algorithm.https://doi.org/10.1515/jmc-2015-0048galton–watson processdiscrete logarithm problemcryptanalysis94a6011t71 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ferradi Houda Géraud Rémi Guilley Sylvain Naccache David Tibouchi Mehdi |
spellingShingle |
Ferradi Houda Géraud Rémi Guilley Sylvain Naccache David Tibouchi Mehdi Recovering Secrets From Prefix-Dependent Leakage Journal of Mathematical Cryptology galton–watson process discrete logarithm problem cryptanalysis 94a60 11t71 |
author_facet |
Ferradi Houda Géraud Rémi Guilley Sylvain Naccache David Tibouchi Mehdi |
author_sort |
Ferradi Houda |
title |
Recovering Secrets From Prefix-Dependent Leakage |
title_short |
Recovering Secrets From Prefix-Dependent Leakage |
title_full |
Recovering Secrets From Prefix-Dependent Leakage |
title_fullStr |
Recovering Secrets From Prefix-Dependent Leakage |
title_full_unstemmed |
Recovering Secrets From Prefix-Dependent Leakage |
title_sort |
recovering secrets from prefix-dependent leakage |
publisher |
De Gruyter |
series |
Journal of Mathematical Cryptology |
issn |
1862-2976 1862-2984 |
publishDate |
2020-06-01 |
description |
We discuss how to recover a secret bitstring given partial information obtained during a computation over that string, assuming the computation is a deterministic algorithm processing the secret bits sequentially. That abstract situation models certain types of side-channel attacks against discrete logarithm and RSA-based cryptosystems, where the adversary obtains information not on the secret exponent directly, but instead on the group or ring element that varies at each step of the exponentiation algorithm. |
topic |
galton–watson process discrete logarithm problem cryptanalysis 94a60 11t71 |
url |
https://doi.org/10.1515/jmc-2015-0048 |
work_keys_str_mv |
AT ferradihouda recoveringsecretsfromprefixdependentleakage AT geraudremi recoveringsecretsfromprefixdependentleakage AT guilleysylvain recoveringsecretsfromprefixdependentleakage AT naccachedavid recoveringsecretsfromprefixdependentleakage AT tibouchimehdi recoveringsecretsfromprefixdependentleakage |
_version_ |
1717767900872310784 |