Theoretical and experimental studies on the corrosion inhibition potentials of some purines for aluminum in 0.1 M HCl

Experimental aspect of the corrosion inhibition potential of adenine (AD), guanine (GU) and, hypoxanthine (HYP) was carried out using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods while the theoretical aspect of the work was carried out by calcul...

Full description

Bibliographic Details
Main Authors: Nnabuk O. Eddy, H. Momoh-Yahaya, Emeka E. Oguzie
Format: Article
Language:English
Published: Elsevier 2015-03-01
Series:Journal of Advanced Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2090123214000058
Description
Summary:Experimental aspect of the corrosion inhibition potential of adenine (AD), guanine (GU) and, hypoxanthine (HYP) was carried out using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods while the theoretical aspect of the work was carried out by calculations of semi-empirical parameters (for AM1, MNDO, CNDO, PM3 and RM1 Hamiltonians), Fukui functions and inhibitor–metal interaction energies. Results obtained from the experimental studies were in good agreement and indicated that adenine (AD), guanine (GU) and hypoxanthine (HYP) are good adsorption inhibitors for the corrosion of aluminum in solutions of HCl. Data obtained from electrochemical experiment revealed that the studied purines functioned by adsorption on the aluminum/HCl interface and inhibited the cathodic half reaction to a greater extent and anodic half reaction to a lesser extent. The adsorption of the purines on the metal surface was found to be exothermic and spontaneous. Deviation of the adsorption characteristics of the studied purines from the Langmuir adsorption model was compensated by the fitness of Flory Huggins and El Awardy et al. adsorption models. Quantum chemical studies revealed that the experimental inhibition efficiencies of the studied purines are functions of some quantum chemical parameters including total energy of the molecules (TE), energy gap (EL–H), electronic energy of the molecule (EE), dipole moment and core–core repulsion energy (CCR). Fukui functions analysis through DFT and MP2 theories indicated slight complications and unphysical results. However, results obtained from calculated Huckel charges, molecular orbital and interaction energies, the adsorption of the inhibitors proceeded through the imine nitrogen (N5) in GU, emanine nitrogen (N7) in AD and the pyridine nitrogen (N5) in HPY.
ISSN:2090-1232
2090-1224