INTRODUCTION TO KERNEL PCA AND OTHER SPECTRAL METHODS APPLIED TO UNSUPERVISED LEARNING INTRODUCCIÓN A KERNEL ACP Y OTROS MÉTODOS ESPECTRALES APLICADOS AL APRENDIZAJE NO SUPERVISADO
In this work, the techniques of Kernel Principal Component Analysis (Kernel PCA or KPCA) and Spectral Clustering are introduced along with some illustrative examples. This work focuses on studying the effects of applying PCA as a preprocessing stage for clustering data. Several tests are carried out...
Main Authors: | Sánchez Luis Gonzalo, Osorio Germán Augusto, Suárez Julio Fernando |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidad Nacional de Colombia
2008-05-01
|
Series: | Revista Colombiana de Estadística |
Subjects: | |
Online Access: | http://www.revistas.unal.edu.co/index.php/estad/article/view/29589 |
Similar Items
-
Introducción a kernel ACP y otros métodos espectrales aplicados al aprendizaje no supervisado
by: LUIS GONZALO SÁNCHEZ, et al.
Published: (2008-06-01) -
Introducción a kernel ACP y otros métodos espectrales aplicados al aprendizaje no supervisado Introduction to Kernel PCA and other Spectral Methods Applied to Unsupervised Learning
by: LUIS GONZALO SÁNCHEZ, et al.
Published: (2008-01-01) -
Multiple Kernel Fuzzy Clustering With Unsupervised Random Forests Kernel and Matrix-Induced Regularization
by: Yin-Ping Zhao, et al.
Published: (2019-01-01) -
Optimum kernels
by: Jitka Poměnková
Published: (2004-01-01) -
Propositional Kernels
by: Mirko Polato, et al.
Published: (2021-08-01)