Summary: | Abstract Background A broad spectrum of non-neoplastic lesions can radiologically mimic cerebral neoplasms. Magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and diffusion-weighted imaging (DWI) are the most extensively used for enabling lesional characterization of different brain disorders. We aimed to assess the diagnostic value of MRS versus DWI in the diagnosis and therapeutic planning of multicentric cerebral focal lesions and in our retrospective study, we enrolled 64 patients with 100 brain lesions who underwent pre- and post-contrast MRI, MRS, and DWI. Diagnoses supplied by the histopathology and follow up clinical results as a gold standard. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy were calculated. Results Conventional MRI poorly differentiates multiple cerebral lesions with 89.33% sensitivity, 44.4% specificity, and 78% accuracy. MRS results revealed statistical significance for differentiating neoplastic from non-neoplastic lesions as regards Cho/Cr, Cho/NAA, and NAA/Cr ratios (M ± SD) with P < 0.001 (significant), and there is statistical significance for neoplastic lesion differentiation when Cho/NAA and Ch/Cr ratios measured in the pre-lesional areas outside the tumor margin. DWI showed mixed diffusion changes in most of the studied lesions and the measured ADC values ranges showed overlap in neoplastic and non-neoplastic lesions, P value = 0.236* (insignificant). Conclusion MRS was found to be a more accurate diagnostic tool than DWI with ADC measurements in the differentiation and therapeutic planning of multicentric cerebral focal lesions.
|