Water‑Borne ZnO/Acrylic Nanocoating: Fabrication, Characterization, and Properties

This work aims to explore how ZnO nanoparticles enhance the mechanical, photoaging, and self‑cleaning properties of water‑borne acrylic coating. Micro/nano‑ZnO particles (at 2 wt.% of total solid resin) were dispersed into the acrylic polymer matrices using ultrasonication to understand the effect o...

Full description

Bibliographic Details
Main Authors: Tien Viet Vu, Thien Vuong Nguyen, Mohammad Tabish, Sehrish Ibrahim, Thi Huong Thuy Hoang, Ram K. Gupta, Thi My Linh Dang, Tuan Anh Nguyen, Ghulam Yasin
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/5/717
Description
Summary:This work aims to explore how ZnO nanoparticles enhance the mechanical, photoaging, and self‑cleaning properties of water‑borne acrylic coating. Micro/nano‑ZnO particles (at 2 wt.% of total solid resin) were dispersed into the acrylic polymer matrices using ultrasonication to understand the effect of the size of the coating properties. The effect of ZnO particles on the properties of composite coatings (25 µm of thick) have been evaluated through various tests, such as abrasion measurement, ultraviolet/condensation (UV/CON) weathering aging, and methylene blue self‑cleaning. Experimental data indicated that the incorporation of ZnO particles enhanced both abrasion resistance and methylene blue removal efficiency of the water‑borne acrylic coatings, with nano‑ZnO particles being the best. However, the weathering degradation of nanocomposite coatings was more severe as compared to the coating with micro‑ZnO (at the same ZnO content).
ISSN:2073-4360