The impact of immunotoxicity in evaluation of the nanomaterials safety

Nanomedicinal products (NMPs), due to their unique properties, are extensively investigated for their biomedical and pharmaceutical applications. Apart from being carriers of certain drugs, nanoparticles can also interact with both the innate and adaptive immune systems, thus eliciting immune respon...

Full description

Bibliographic Details
Main Authors: Ayse Basak Engin, A Wallace Hayes
Format: Article
Language:English
Published: SAGE Publishing 2018-02-01
Series:Toxicology Research and Application
Online Access:https://doi.org/10.1177/2397847318755579
Description
Summary:Nanomedicinal products (NMPs), due to their unique properties, are extensively investigated for their biomedical and pharmaceutical applications. Apart from being carriers of certain drugs, nanoparticles can also interact with both the innate and adaptive immune systems, thus eliciting immune responses. Following administration, their discrete physicochemical properties make each NMP act differently in the organism. Actually, the toxic effects of NMPs, in terms of specific end points, do not necessarily depend on the specific group or structural type of the particle. Furthermore, the nanoformulation may change the pharmacokinetic/toxicokinetic profile of the drug. Unveiling the structure–activity relationship of NMPs would help to clarify their immunomodulatory effects. Therefore, in addition to the current regulatory immunotoxicity testing strategies, development and regulatory approval of nano-sized pharmaceuticals still need to be discussed in order to identify potential gaps in the safety assessment.
ISSN:2397-8473