Hermitean Cauchy Integral Decomposition of Continuous Functions on Hypersurfaces
<p/> <p>We consider Hölder continuous circulant <inline-formula> <graphic file="1687-2770-2008-425256-i1.gif"/></inline-formula> matrix functions <inline-formula> <graphic file="1687-2770-2008-425256-i2.gif"/></inline-formula&...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2008-01-01
|
Series: | Boundary Value Problems |
Online Access: | http://www.boundaryvalueproblems.com/content/2008/425256 |
id |
doaj-5dd49b8a4c174d13924c30966a48519b |
---|---|
record_format |
Article |
spelling |
doaj-5dd49b8a4c174d13924c30966a48519b2020-11-24T21:50:40ZengSpringerOpenBoundary Value Problems1687-27621687-27702008-01-0120081425256Hermitean Cauchy Integral Decomposition of Continuous Functions on HypersurfacesBrackx FredDe Knock BramDe Schepper HenniePeña DixanPeñaSommen FrankReyes JuanBoryBlaya RicardoAbreu<p/> <p>We consider Hölder continuous circulant <inline-formula> <graphic file="1687-2770-2008-425256-i1.gif"/></inline-formula> matrix functions <inline-formula> <graphic file="1687-2770-2008-425256-i2.gif"/></inline-formula> defined on the Ahlfors-David regular boundary <inline-formula> <graphic file="1687-2770-2008-425256-i3.gif"/></inline-formula> of a domain <inline-formula> <graphic file="1687-2770-2008-425256-i4.gif"/></inline-formula> in <inline-formula> <graphic file="1687-2770-2008-425256-i5.gif"/></inline-formula>. The main goal is to study under which conditions such a function <inline-formula> <graphic file="1687-2770-2008-425256-i6.gif"/></inline-formula> can be decomposed as <inline-formula> <graphic file="1687-2770-2008-425256-i7.gif"/></inline-formula>, where the components <inline-formula> <graphic file="1687-2770-2008-425256-i8.gif"/></inline-formula> are extendable to two-sided <inline-formula> <graphic file="1687-2770-2008-425256-i9.gif"/></inline-formula>-monogenic functions in the interior and the exterior of <inline-formula> <graphic file="1687-2770-2008-425256-i10.gif"/></inline-formula>, respectively. <inline-formula> <graphic file="1687-2770-2008-425256-i11.gif"/></inline-formula>-monogenicity is a concept from the framework of Hermitean Clifford analysis, a higher dimensional function theory centered around the simultaneous null solutions of two first-order vector-valued differential operators, called Hermitean Dirac operators. <inline-formula> <graphic file="1687-2770-2008-425256-i12.gif"/></inline-formula>-monogenic functions then are the null solutions of a <inline-formula> <graphic file="1687-2770-2008-425256-i13.gif"/></inline-formula> matrix Dirac operator, having these Hermitean Dirac operators as its entries; such functions have been crucial for the development of function theoretic results in the Hermitean Clifford context.</p>http://www.boundaryvalueproblems.com/content/2008/425256 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Brackx Fred De Knock Bram De Schepper Hennie Peña DixanPeña Sommen Frank Reyes JuanBory Blaya RicardoAbreu |
spellingShingle |
Brackx Fred De Knock Bram De Schepper Hennie Peña DixanPeña Sommen Frank Reyes JuanBory Blaya RicardoAbreu Hermitean Cauchy Integral Decomposition of Continuous Functions on Hypersurfaces Boundary Value Problems |
author_facet |
Brackx Fred De Knock Bram De Schepper Hennie Peña DixanPeña Sommen Frank Reyes JuanBory Blaya RicardoAbreu |
author_sort |
Brackx Fred |
title |
Hermitean Cauchy Integral Decomposition of Continuous Functions on Hypersurfaces |
title_short |
Hermitean Cauchy Integral Decomposition of Continuous Functions on Hypersurfaces |
title_full |
Hermitean Cauchy Integral Decomposition of Continuous Functions on Hypersurfaces |
title_fullStr |
Hermitean Cauchy Integral Decomposition of Continuous Functions on Hypersurfaces |
title_full_unstemmed |
Hermitean Cauchy Integral Decomposition of Continuous Functions on Hypersurfaces |
title_sort |
hermitean cauchy integral decomposition of continuous functions on hypersurfaces |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2762 1687-2770 |
publishDate |
2008-01-01 |
description |
<p/> <p>We consider Hölder continuous circulant <inline-formula> <graphic file="1687-2770-2008-425256-i1.gif"/></inline-formula> matrix functions <inline-formula> <graphic file="1687-2770-2008-425256-i2.gif"/></inline-formula> defined on the Ahlfors-David regular boundary <inline-formula> <graphic file="1687-2770-2008-425256-i3.gif"/></inline-formula> of a domain <inline-formula> <graphic file="1687-2770-2008-425256-i4.gif"/></inline-formula> in <inline-formula> <graphic file="1687-2770-2008-425256-i5.gif"/></inline-formula>. The main goal is to study under which conditions such a function <inline-formula> <graphic file="1687-2770-2008-425256-i6.gif"/></inline-formula> can be decomposed as <inline-formula> <graphic file="1687-2770-2008-425256-i7.gif"/></inline-formula>, where the components <inline-formula> <graphic file="1687-2770-2008-425256-i8.gif"/></inline-formula> are extendable to two-sided <inline-formula> <graphic file="1687-2770-2008-425256-i9.gif"/></inline-formula>-monogenic functions in the interior and the exterior of <inline-formula> <graphic file="1687-2770-2008-425256-i10.gif"/></inline-formula>, respectively. <inline-formula> <graphic file="1687-2770-2008-425256-i11.gif"/></inline-formula>-monogenicity is a concept from the framework of Hermitean Clifford analysis, a higher dimensional function theory centered around the simultaneous null solutions of two first-order vector-valued differential operators, called Hermitean Dirac operators. <inline-formula> <graphic file="1687-2770-2008-425256-i12.gif"/></inline-formula>-monogenic functions then are the null solutions of a <inline-formula> <graphic file="1687-2770-2008-425256-i13.gif"/></inline-formula> matrix Dirac operator, having these Hermitean Dirac operators as its entries; such functions have been crucial for the development of function theoretic results in the Hermitean Clifford context.</p> |
url |
http://www.boundaryvalueproblems.com/content/2008/425256 |
work_keys_str_mv |
AT brackxfred hermiteancauchyintegraldecompositionofcontinuousfunctionsonhypersurfaces AT deknockbram hermiteancauchyintegraldecompositionofcontinuousfunctionsonhypersurfaces AT deschepperhennie hermiteancauchyintegraldecompositionofcontinuousfunctionsonhypersurfaces AT pe241adixanpe241a hermiteancauchyintegraldecompositionofcontinuousfunctionsonhypersurfaces AT sommenfrank hermiteancauchyintegraldecompositionofcontinuousfunctionsonhypersurfaces AT reyesjuanbory hermiteancauchyintegraldecompositionofcontinuousfunctionsonhypersurfaces AT blayaricardoabreu hermiteancauchyintegraldecompositionofcontinuousfunctionsonhypersurfaces |
_version_ |
1725882273286324224 |