Summary: | Commodity formulations contain many chemically distinct components and their mutual interactions define the beneficial characteristics of the formulation. Mixing oppositely charged polymers and surfactants invariably induces macroscopic phase separation, to a degree dependent on the prevailing polymer and surface charge densities, and the interaction can be modulated by added ionic surfactants. Here, it is shown that a general universality exists between the charge present on a series of cationic-modified cellulose polymers—the charge being controlled either by the degree of cationic modification of the polymer itself or through the subsequent level of anionic surfactant binding—and its capacity to remove anionic colloidal material from solution, be that silica particles or polystyrene-butadiene lattices. Particulate material not removed from solution bears no adsorbed polymer, i.e., the particle surface is bare. Addition of nonionic surfactant does not negate this universality, implying that the nonionic surfactant is largely a spectator molecule or structure (micelle) in these systems, and that the dominant force is an electrostatic one.
|