A Pruning-Based Disk Scheduling Algorithm for Heterogeneous I/O Workloads

In heterogeneous I/O workload environments, disk scheduling algorithms should support different QoS (Quality-of-Service) for each I/O request. For example, the algorithm should meet the deadlines of real-time requests and at the same time provide reasonable response time for best-effort requests. Th...

Full description

Bibliographic Details
Main Authors: Taeseok Kim, Hyokyung Bahn, Youjip Won
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2014/940850
Description
Summary:In heterogeneous I/O workload environments, disk scheduling algorithms should support different QoS (Quality-of-Service) for each I/O request. For example, the algorithm should meet the deadlines of real-time requests and at the same time provide reasonable response time for best-effort requests. This paper presents a novel disk scheduling algorithm called G-SCAN (Grouping-SCAN) for handling heterogeneous I/O workloads. To find a schedule that satisfies the deadline constraints and seek time minimization simultaneously, G-SCAN maintains a series of candidate schedules and expands the schedules whenever a new request arrives. Maintaining these candidate schedules requires excessive spatial and temporal overhead, but G-SCAN reduces the overhead to a manageable level via pruning the state space using two heuristics. One is grouping that clusters adjacent best-effort requests into a single scheduling unit and the other is the branch-and-bound strategy that cuts off inefficient or impractical schedules. Experiments with various synthetic and real-world I/O workloads show that G-SCAN outperforms existing disk scheduling algorithms significantly in terms of the average response time, throughput, and QoS-guarantees for heterogeneous I/O workloads. We also show that the overhead of G-SCAN is reasonable for on-line execution.
ISSN:2356-6140
1537-744X