A ROBUST MATCHING METHOD FOR UNMMANED AERIAL VEHICLE IMAGES WITH DIFFERENT VIEWPOINT ANGLES BASED ON REGIONAL COHERENCY

One of the main challenges confronting high-resolution remote sensing image matching is how to address the issue of geometric deformation between images, especially when the images are obtained from different viewpoints. In this paper, a robust matching method for Unmanned Aerial Vehicle images of d...

Full description

Bibliographic Details
Main Authors: Z. Shao, C. Li, N. Yang
Format: Article
Language:English
Published: Copernicus Publications 2015-08-01
Series:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-1-W1/9/2015/isprsannals-II-1-W1-9-2015.pdf
Description
Summary:One of the main challenges confronting high-resolution remote sensing image matching is how to address the issue of geometric deformation between images, especially when the images are obtained from different viewpoints. In this paper, a robust matching method for Unmanned Aerial Vehicle images of different viewpoint angles based on regional coherency is proposed. The literature on the geometric transform analysis reveals that if transformations between different pixel pairs are different, they can't be expressed by a uniform affine transform. While for the same real scene, if the instantaneous field of view or the target depth changes is small, transformation between pixels in the whole image can be approximated by an affine transform. On the basis of this analysis, a region coherency matching method for Unmanned Aerial Vehicle images is proposed. In the proposed method, the simplified mapping from image view change to scale change and rotation change has been derived. Through this processing, the matching between view change images can be converted into the matching between rotation and scale changed images. In the method, firstly local image regions are detected and view changes between these local regions are mapped to rotation and scale change by performing local region simulation. And then, point feature detection and matching are implemented in the simulated image regions. Finally, a group of Unmanned Aerial Vehicle images are adopted to verify the performance of proposed matching method respectively, and a comparative analysis with other methods demonstrates the effectiveness of the proposed method.
ISSN:2194-9042
2194-9050