Summary: | ESA’s upcoming satellite Sentinel-2 will provide Earth images of high spatial, spectral and temporal resolution and aims to ensure continuity for Landsat and SPOT observations. In comparison to the latter sensors, Sentinel-2 incorporates three new spectral bands in the red-edge region, which are centered at 705, 740 and 783 nm. This study addresses the importance of these new bands for the retrieval and monitoring of two important biophysical parameters: green leaf area index (LAI) and chlorophyll content (Ch). With data from several ESA field campaigns over agricultural sites (SPARC, AgriSAR, CEFLES2) we have evaluated the efficacy of two empirical methods that specifically make use of the new Sentinel-2 bands. First, it was shown that LAI can be derived from a generic normalized difference index (NDI) using hyperspectral data, with 674 nm with 712 nm as best performing bands. These bands are positioned closely to the Sentinel-2 B4 (665 nm) and the new red-edge B5 (705 nm) band. The method has been applied to simulated Sentinel-2 data. The resulting green LAI map was validated against field data of various crop types, thereby spanning a LAI between 0 and 6, and yielded a RMSE of 0.6. Second, the recently developed “Normalized Area Over reflectance Curve” (NAOC), an index that derives Ch from hyperspectral data, was studied on its compatibility with simulated Sentinel-2 data. This index integrates the reflectance curve between 643 and 795 nm, thereby including the new Sentinel-2 bands in the red-edge region. We found that these new bands significantly improve the accuracy of Ch estimation. Both methods emphasize the importance of red-edge bands for operational estimation of biophysical parameters from Sentinel-2.
|