Fixed points and controllability in delay systems

<p>Schaefer's fixed point theorem is used to study the controllability in an infinite delay system <mml:math alttext="$x'(t)=G(t,x_t)+(Bu)(t)$"> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&...

Full description

Bibliographic Details
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.hindawi.com/GetArticle.aspx?doi=10.1155/FPTA/2006/41480
id doaj-5d666d05d8fa469b915dcadb5eeace20
record_format Article
spelling doaj-5d666d05d8fa469b915dcadb5eeace202020-11-25T01:39:16ZengSpringerOpenFixed Point Theory and Applications1687-18202006-01-012006Fixed points and controllability in delay systems<p>Schaefer's fixed point theorem is used to study the controllability in an infinite delay system <mml:math alttext="$x'(t)=G(t,x_t)+(Bu)(t)$"> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>B</mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math>. A compact map or homotopy is constructed enabling us to show that if there is an <emph>a priori</emph> bound on all possible solutions of the companion control system <mml:math alttext="$x'(t)=lambda[G(t,x_t)+(Bu)(t)]$, $0<lambda<1$"> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>&#x03BB;</mml:mi> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>B</mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>&#x003C;</mml:mo> <mml:mi>&#x03BB;</mml:mi> <mml:mo>&#x003C;</mml:mo> <mml:mn>1</mml:mn> </mml:math>, then there exists a solution for <mml:math alttext="$lambda=1$"> <mml:mi>&#x03BB;</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:math>. The <emph>a priori</emph> bound is established by means of a Liapunov functional or applying an integral inequality. Applications to integral control systems are given to illustrate the approach.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/FPTA/2006/41480
collection DOAJ
language English
format Article
sources DOAJ
title Fixed points and controllability in delay systems
spellingShingle Fixed points and controllability in delay systems
Fixed Point Theory and Applications
title_short Fixed points and controllability in delay systems
title_full Fixed points and controllability in delay systems
title_fullStr Fixed points and controllability in delay systems
title_full_unstemmed Fixed points and controllability in delay systems
title_sort fixed points and controllability in delay systems
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
publishDate 2006-01-01
url http://www.hindawi.com/GetArticle.aspx?doi=10.1155/FPTA/2006/41480
_version_ 1715703573721907200
description <p>Schaefer's fixed point theorem is used to study the controllability in an infinite delay system <mml:math alttext="$x'(t)=G(t,x_t)+(Bu)(t)$"> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>B</mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math>. A compact map or homotopy is constructed enabling us to show that if there is an <emph>a priori</emph> bound on all possible solutions of the companion control system <mml:math alttext="$x'(t)=lambda[G(t,x_t)+(Bu)(t)]$, $0<lambda<1$"> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>&#x2032;</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>&#x03BB;</mml:mi> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mi>B</mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo>&#x003C;</mml:mo> <mml:mi>&#x03BB;</mml:mi> <mml:mo>&#x003C;</mml:mo> <mml:mn>1</mml:mn> </mml:math>, then there exists a solution for <mml:math alttext="$lambda=1$"> <mml:mi>&#x03BB;</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:math>. The <emph>a priori</emph> bound is established by means of a Liapunov functional or applying an integral inequality. Applications to integral control systems are given to illustrate the approach.</p>