Cyclic mechanical stability of thermal energy storage media

Closing the gap between supply and demand of energy is one of the biggest challenges of our era. In this aspect, thermal energy storage via borehole thermal energy storage (BTES) and sensible heat storage systems has recently emerged as a practical and encouraging alternative in satisfying the energ...

Full description

Bibliographic Details
Main Authors: Hailemariam Henok, Wuttke Frank
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/65/e3sconf_icegt2020_07008.pdf
Description
Summary:Closing the gap between supply and demand of energy is one of the biggest challenges of our era. In this aspect, thermal energy storage via borehole thermal energy storage (BTES) and sensible heat storage systems has recently emerged as a practical and encouraging alternative in satisfying the energy requirements of household and industrial applications. The majority of these heat energy storage systems are designed as part of the foundation or sub-structure of buildings with load bearing capabilities, hence their mechanical stability should be carefully studied prior to the design and operation phases of the heat storage system. In this study, the cyclic mechanical performance of a commercial cement-based porous heat storage material is analyzed under different amplitudes of cyclic loading and medium temperatures using a recently developed cyclic thermo-mechanical triaxial device. The results show a significant dependence of the cyclic mechanical behavior of the material, such as in the form of cyclic axial and accumulated plastic strains, on the different thermo-mechanical loading schemes.
ISSN:2267-1242