Characterization of the rate and duration of grain filling in wheat in southwestern China

Field trials were carried out during 2011–2013 in three locations on 10 wheat genotypes. Traits that were investigated included grain weight, grain-filling duration, grain-filling rates and the lag phase from flowering to the commencement of effective grain filling. The grain-filling duration and ra...

Full description

Bibliographic Details
Main Authors: Xiaoli Wu, Yonglu Tang, Chaosu Li, Chun Wu
Format: Article
Language:English
Published: Taylor & Francis Group 2018-10-01
Series:Plant Production Science
Subjects:
Online Access:http://dx.doi.org/10.1080/1343943X.2018.1518722
Description
Summary:Field trials were carried out during 2011–2013 in three locations on 10 wheat genotypes. Traits that were investigated included grain weight, grain-filling duration, grain-filling rates and the lag phase from flowering to the commencement of effective grain filling. The grain-filling duration and rate were fitted by Richard’s equation in thermal time (growing degree-days (GDD), base temperature 9ºC). A combined ANOVA across environments showed that the grain weight was mainly affected by genotype, while most of the other grain-filling characters were influenced by the environment and G × E interactions. Grain filling lasted between 362 to 400 GDD and included a lag phase that ranged from 67 to 86 GDD. Both the effective and maximum rates of grain filling ranged from 0.12 to 0.15 mg GDD−1 and 0.18–0.22 to GDD−1, respectively. The lag phase was positively correlated with grain weight and rates of grain filling, whereas days to anthesis were significantly negatively correlated with the lag phase and both rates of grain filling. Temperature during grain filling was negatively correlated with the lag phase. The variation in grain weight was positively associated with the rate of grain filling, which, in turn, was related to the grain number per unit area. A compensating variability existed among the genotypes in both the grain number and grain-filling rate. The study of genotypic stability demonstrated that Chuanmai42 and Chuanmai104 had high grain weight and stability among most of the grain-filling parameters, and also had high grain yield. Chuanmai42 and Chuanmai104 were the best genotypes for improving the yield potential and grain weight stability.
ISSN:1343-943X
1349-1008