Extending Characters of Fixed Point Algebras
A dynamical system is a triple <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>G</mi> <mo>,</mo> <mi>α</mi> <mo>)</mo> </...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-11-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/7/4/79 |
id |
doaj-5d328ff0e7ae4ac2b141e1c9c05fab8a |
---|---|
record_format |
Article |
spelling |
doaj-5d328ff0e7ae4ac2b141e1c9c05fab8a2020-11-24T22:52:09ZengMDPI AGAxioms2075-16802018-11-01747910.3390/axioms7040079axioms7040079Extending Characters of Fixed Point AlgebrasStefan Wagner0Department of Mathematics and Natural Sciences, Blekinge Tekniska Högskola, 371 41 Karlskrona, SwedenA dynamical system is a triple <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>G</mi> <mo>,</mo> <mi>α</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> consisting of a unital locally convex algebra <i>A</i>, a topological group <i>G</i>, and a group homomorphism <inline-formula> <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>:</mo> <mi>G</mi> <mo>→</mo> <mo form="prefix">Aut</mo> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> that induces a continuous action of <i>G</i> on <i>A</i>. Furthermore, a unital locally convex algebra <i>A</i> is called a continuous inverse algebra, or CIA for short, if its group of units <inline-formula> <math display="inline"> <semantics> <msup> <mi>A</mi> <mo>×</mo> </msup> </semantics> </math> </inline-formula> is open in <i>A</i> and the inversion map <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ι</mi> <mo>:</mo> <msup> <mi>A</mi> <mo>×</mo> </msup> <mo>→</mo> <msup> <mi>A</mi> <mo>×</mo> </msup> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>↦</mo> <msup> <mi>a</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> is continuous at <inline-formula> <math display="inline"> <semantics> <msub> <mn>1</mn> <mi>A</mi> </msub> </semantics> </math> </inline-formula>. Given a dynamical system <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>G</mi> <mo>,</mo> <mi>α</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> with a complete commutative CIA <i>A</i> and a compact group <i>G</i>, we show that each character of the corresponding fixed point algebra can be extended to a character of <i>A</i>.https://www.mdpi.com/2075-1680/7/4/79dynamical systemcontinuous inverse algebracharactermaximal idealfixed point algebraextension |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Stefan Wagner |
spellingShingle |
Stefan Wagner Extending Characters of Fixed Point Algebras Axioms dynamical system continuous inverse algebra character maximal ideal fixed point algebra extension |
author_facet |
Stefan Wagner |
author_sort |
Stefan Wagner |
title |
Extending Characters of Fixed Point Algebras |
title_short |
Extending Characters of Fixed Point Algebras |
title_full |
Extending Characters of Fixed Point Algebras |
title_fullStr |
Extending Characters of Fixed Point Algebras |
title_full_unstemmed |
Extending Characters of Fixed Point Algebras |
title_sort |
extending characters of fixed point algebras |
publisher |
MDPI AG |
series |
Axioms |
issn |
2075-1680 |
publishDate |
2018-11-01 |
description |
A dynamical system is a triple <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>G</mi> <mo>,</mo> <mi>α</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> consisting of a unital locally convex algebra <i>A</i>, a topological group <i>G</i>, and a group homomorphism <inline-formula> <math display="inline"> <semantics> <mrow> <mi>α</mi> <mo>:</mo> <mi>G</mi> <mo>→</mo> <mo form="prefix">Aut</mo> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> that induces a continuous action of <i>G</i> on <i>A</i>. Furthermore, a unital locally convex algebra <i>A</i> is called a continuous inverse algebra, or CIA for short, if its group of units <inline-formula> <math display="inline"> <semantics> <msup> <mi>A</mi> <mo>×</mo> </msup> </semantics> </math> </inline-formula> is open in <i>A</i> and the inversion map <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ι</mi> <mo>:</mo> <msup> <mi>A</mi> <mo>×</mo> </msup> <mo>→</mo> <msup> <mi>A</mi> <mo>×</mo> </msup> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>a</mi> <mo>↦</mo> <msup> <mi>a</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> is continuous at <inline-formula> <math display="inline"> <semantics> <msub> <mn>1</mn> <mi>A</mi> </msub> </semantics> </math> </inline-formula>. Given a dynamical system <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>G</mi> <mo>,</mo> <mi>α</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> with a complete commutative CIA <i>A</i> and a compact group <i>G</i>, we show that each character of the corresponding fixed point algebra can be extended to a character of <i>A</i>. |
topic |
dynamical system continuous inverse algebra character maximal ideal fixed point algebra extension |
url |
https://www.mdpi.com/2075-1680/7/4/79 |
work_keys_str_mv |
AT stefanwagner extendingcharactersoffixedpointalgebras |
_version_ |
1725666868296941568 |