CLASSIFICATION OF DUAL-WAVELENGTH AIRBORNE LASER SCANNING POINT CLOUD BASED ON THE RADIOMETRIC PROPERTIES OF THE OBJECTS
Airborne laser scanning (ALS) is a well-known and willingly used technology. One of the advantages of this technology is primarily its fast and accurate data registration. In recent years ALS is continuously developed. One of the latest achievements is multispectral ALS, which consists in obtaining...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-05-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2/901/2018/isprs-archives-XLII-2-901-2018.pdf |
id |
doaj-5d2da321cdc9437ca487d0170e9107e1 |
---|---|
record_format |
Article |
spelling |
doaj-5d2da321cdc9437ca487d0170e9107e12020-11-24T23:56:41ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342018-05-01XLII-290190710.5194/isprs-archives-XLII-2-901-2018CLASSIFICATION OF DUAL-WAVELENGTH AIRBORNE LASER SCANNING POINT CLOUD BASED ON THE RADIOMETRIC PROPERTIES OF THE OBJECTSM. Pilarska0Warsaw University of Technology, Faculty of Geodesy and Cartography, Warsaw, PolandAirborne laser scanning (ALS) is a well-known and willingly used technology. One of the advantages of this technology is primarily its fast and accurate data registration. In recent years ALS is continuously developed. One of the latest achievements is multispectral ALS, which consists in obtaining simultaneously the data in more than one laser wavelength. In this article the results of the dual-wavelength ALS data classification are presented. The data were acquired with RIEGL VQ-1560i sensor, which is equipped with two laser scanners operating in different wavelengths: 532 nm and 1064 nm. Two classification approaches are presented in the article: classification, which is based on geometric relationships between points and classification, which mostly relies on the radiometric properties of registered objects. The overall accuracy of the geometric classification was 86 %, whereas for the radiometric classification it was 81 %. As a result, it can be assumed that the radiometric features which are provided by the multispectral ALS have potential to be successfully used in ALS point cloud classification.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2/901/2018/isprs-archives-XLII-2-901-2018.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. Pilarska |
spellingShingle |
M. Pilarska CLASSIFICATION OF DUAL-WAVELENGTH AIRBORNE LASER SCANNING POINT CLOUD BASED ON THE RADIOMETRIC PROPERTIES OF THE OBJECTS The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
author_facet |
M. Pilarska |
author_sort |
M. Pilarska |
title |
CLASSIFICATION OF DUAL-WAVELENGTH AIRBORNE LASER SCANNING POINT CLOUD BASED ON THE RADIOMETRIC PROPERTIES OF THE OBJECTS |
title_short |
CLASSIFICATION OF DUAL-WAVELENGTH AIRBORNE LASER SCANNING POINT CLOUD BASED ON THE RADIOMETRIC PROPERTIES OF THE OBJECTS |
title_full |
CLASSIFICATION OF DUAL-WAVELENGTH AIRBORNE LASER SCANNING POINT CLOUD BASED ON THE RADIOMETRIC PROPERTIES OF THE OBJECTS |
title_fullStr |
CLASSIFICATION OF DUAL-WAVELENGTH AIRBORNE LASER SCANNING POINT CLOUD BASED ON THE RADIOMETRIC PROPERTIES OF THE OBJECTS |
title_full_unstemmed |
CLASSIFICATION OF DUAL-WAVELENGTH AIRBORNE LASER SCANNING POINT CLOUD BASED ON THE RADIOMETRIC PROPERTIES OF THE OBJECTS |
title_sort |
classification of dual-wavelength airborne laser scanning point cloud based on the radiometric properties of the objects |
publisher |
Copernicus Publications |
series |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
issn |
1682-1750 2194-9034 |
publishDate |
2018-05-01 |
description |
Airborne laser scanning (ALS) is a well-known and willingly used technology. One of the advantages of this technology is primarily its fast and accurate data registration. In recent years ALS is continuously developed. One of the latest achievements is multispectral ALS, which consists in obtaining simultaneously the data in more than one laser wavelength. In this article the results of the dual-wavelength ALS data classification are presented. The data were acquired with RIEGL VQ-1560i sensor, which is equipped with two laser scanners operating in different wavelengths: 532 nm and 1064 nm. Two classification approaches are presented in the article: classification, which is based on geometric relationships between points and classification, which mostly relies on the radiometric properties of registered objects. The overall accuracy of the geometric classification was 86 %, whereas for the radiometric classification it was 81 %. As a result, it can be assumed that the radiometric features which are provided by the multispectral ALS have potential to be successfully used in ALS point cloud classification. |
url |
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2/901/2018/isprs-archives-XLII-2-901-2018.pdf |
work_keys_str_mv |
AT mpilarska classificationofdualwavelengthairbornelaserscanningpointcloudbasedontheradiometricpropertiesoftheobjects |
_version_ |
1725457163980111872 |