СHIRAL RECOGNITION OF CYSTEINE MOLECULES BY CHIRAL CdSe AND CdS QUANTUM DOTS
Here, we report the investigation of mechanism of chiral molecular recognition of cysteine biomolecules by chiral CdSe and CdS semiconductor nanocrystals. To observe chiral recognition process, we prepared enantioenriched ensembles of the nanocrystals capped with achiral ligand. The enantioenriched...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University)
2015-11-01
|
Series: | Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki |
Subjects: | |
Online Access: | http://ntv.ifmo.ru/file/article/14092.pdf |
id |
doaj-5d19cd2637f848bcbaa771cc257f5160 |
---|---|
record_format |
Article |
spelling |
doaj-5d19cd2637f848bcbaa771cc257f51602020-11-25T02:27:01ZengSaint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University)Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki2226-14942500-03732015-11-011561054106110.17586/2226-1494-2015-15-6-1054-1061СHIRAL RECOGNITION OF CYSTEINE MOLECULES BY CHIRAL CdSe AND CdS QUANTUM DOTSM. V. MukhinaV. G. MaslovA. V. BaranovA. V. FedorovY. K. Gun’koHere, we report the investigation of mechanism of chiral molecular recognition of cysteine biomolecules by chiral CdSe and CdS semiconductor nanocrystals. To observe chiral recognition process, we prepared enantioenriched ensembles of the nanocrystals capped with achiral ligand. The enantioenriched samples of intrinsically chiral CdSe quantum dots were prepared by separation of initial racemic mixture of the nanocrystals using chiral phase transfer from chloroform to water driven by L- and D-cysteine. Chiral molecules of cysteine and penicillamine were substituted for achiral molecules of dodecanethiol on the surfaces of CdSe and CdS samples, respectively, via reverse phase transfer from water to chloroform. We estimated an efficiency of the hetero- (d-L or l-D) and homocomplexes (l-L) formation by comparing the extents of corresponding complexing reactions. Using circular dichroism spectroscopy data we show an ability of nanocrystals enantiomers to discriminate between left-handed and right-handed enantiomers of biomolecules via preferential formation of heterocomplexes. Development of approaches for obtaining chiral nanocrystals via chiral phase transfer offers opportunities for investigation of molecular recognition at the nano/bio interfaces.http://ntv.ifmo.ru/file/article/14092.pdfquantum dotsCdSeCdSchiralitymolecular recognitionenantioselectivitycircular dichroismabsorption |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. V. Mukhina V. G. Maslov A. V. Baranov A. V. Fedorov Y. K. Gun’ko |
spellingShingle |
M. V. Mukhina V. G. Maslov A. V. Baranov A. V. Fedorov Y. K. Gun’ko СHIRAL RECOGNITION OF CYSTEINE MOLECULES BY CHIRAL CdSe AND CdS QUANTUM DOTS Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki quantum dots CdSe CdS chirality molecular recognition enantioselectivity circular dichroism absorption |
author_facet |
M. V. Mukhina V. G. Maslov A. V. Baranov A. V. Fedorov Y. K. Gun’ko |
author_sort |
M. V. Mukhina |
title |
СHIRAL RECOGNITION OF CYSTEINE MOLECULES BY CHIRAL CdSe AND CdS QUANTUM DOTS |
title_short |
СHIRAL RECOGNITION OF CYSTEINE MOLECULES BY CHIRAL CdSe AND CdS QUANTUM DOTS |
title_full |
СHIRAL RECOGNITION OF CYSTEINE MOLECULES BY CHIRAL CdSe AND CdS QUANTUM DOTS |
title_fullStr |
СHIRAL RECOGNITION OF CYSTEINE MOLECULES BY CHIRAL CdSe AND CdS QUANTUM DOTS |
title_full_unstemmed |
СHIRAL RECOGNITION OF CYSTEINE MOLECULES BY CHIRAL CdSe AND CdS QUANTUM DOTS |
title_sort |
сhiral recognition of cysteine molecules by chiral cdse and cds quantum dots |
publisher |
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University) |
series |
Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki |
issn |
2226-1494 2500-0373 |
publishDate |
2015-11-01 |
description |
Here, we report the investigation of mechanism of chiral molecular recognition of cysteine biomolecules by chiral CdSe and CdS semiconductor nanocrystals. To observe chiral recognition process, we prepared enantioenriched ensembles of the nanocrystals capped with achiral ligand. The enantioenriched samples of intrinsically chiral CdSe quantum dots were prepared by separation of initial racemic mixture of the nanocrystals using chiral phase transfer from chloroform to water driven by L- and D-cysteine. Chiral molecules of cysteine and penicillamine were substituted for achiral molecules of dodecanethiol on the surfaces of CdSe and CdS samples, respectively, via reverse phase transfer from water to chloroform. We estimated an efficiency of the hetero- (d-L or l-D) and homocomplexes (l-L) formation by comparing the extents of corresponding complexing reactions. Using circular dichroism spectroscopy data we show an ability of nanocrystals enantiomers to discriminate between left-handed and right-handed enantiomers of biomolecules via preferential formation of heterocomplexes. Development of approaches for obtaining chiral nanocrystals via chiral phase transfer offers opportunities for investigation of molecular recognition at the nano/bio interfaces. |
topic |
quantum dots CdSe CdS chirality molecular recognition enantioselectivity circular dichroism absorption |
url |
http://ntv.ifmo.ru/file/article/14092.pdf |
work_keys_str_mv |
AT mvmukhina shiralrecognitionofcysteinemoleculesbychiralcdseandcdsquantumdots AT vgmaslov shiralrecognitionofcysteinemoleculesbychiralcdseandcdsquantumdots AT avbaranov shiralrecognitionofcysteinemoleculesbychiralcdseandcdsquantumdots AT avfedorov shiralrecognitionofcysteinemoleculesbychiralcdseandcdsquantumdots AT ykgunko shiralrecognitionofcysteinemoleculesbychiralcdseandcdsquantumdots |
_version_ |
1724844567526637568 |