PMSE long term observations using SuperDARN SANAE HF radar measurements
It is known that the presence of nanometre-scale ice particles and neutral air turbulence in the Polar summer mesosphere modify the D-region plasma, resulting in strong backscatter. These strong backscatters are referred to as Polar Mesosphere Summer Echoes (PMSE). Although studies on PMSE have been...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Chinese Geoscience Union
2017-01-01
|
Series: | Terrestrial, Atmospheric and Oceanic Sciences |
Online Access: |
http://tao.cgu.org.tw/media/k2/attachments/v283p371.pdf
|
id |
doaj-5d184dfa974f4114b2f1e15f9d813b32 |
---|---|
record_format |
Article |
spelling |
doaj-5d184dfa974f4114b2f1e15f9d813b322020-11-24T22:15:56ZengChinese Geoscience UnionTerrestrial, Atmospheric and Oceanic Sciences1017-08392311-76802017-01-0128337110.3319/TAO.2016.09.19.01PMSE long term observations using SuperDARN SANAE HF radar measurementsOlakunle OgunjobiVenkataraman SivakumarJudy Ann Elizabeth StephensonZolile MtumelaIt is known that the presence of nanometre-scale ice particles and neutral air turbulence in the Polar summer mesosphere modify the D-region plasma, resulting in strong backscatter. These strong backscatters are referred to as Polar Mesosphere Summer Echoes (PMSE). Although studies on PMSE have been ongoing for over three decades, aspects revealed by various instruments are still the subject of discussion. As a sequel to the paper by Ogunjobi et al. (2015), we report on the long term trends and variations in PMSE occurrence probability from Super Dual Auroral Radar Network (SuperDARN) high frequency (HF) radar measurements over the South African National Antarctic Expedition IV (SANAE IV). In this current paper, a simple multiple-filter technique is employed to obtain the occurrence probability rate for SuperDARN-PMSE during the summer periods for the years 1998 - 2007. The SuperDARN-PMSE occurrence probability rate in relation to geomagnetic activity is examined. The mesospheric neutral winds and temperature trends during these periods, are further studied and presented in this paper. Both the monthly and diurnal variations in occurrence are consistent with previous reports, confirming the presence of PMSE from SuperDARN SANAE IV radar measurements and the influence of pole to pole mesospheric transport circulation. The special mesospheric mean flow observed prior to the year 2002 is ascribed to the influence of solar activity. The SuperDARN-PMSE occurrence probability peaks with lowered geomagnetic activity. These present results support the hypothesis that the particle precipitation also plays an important role in SuperDARN-PMSE occurrence. http://tao.cgu.org.tw/media/k2/attachments/v283p371.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Olakunle Ogunjobi Venkataraman Sivakumar Judy Ann Elizabeth Stephenson Zolile Mtumela |
spellingShingle |
Olakunle Ogunjobi Venkataraman Sivakumar Judy Ann Elizabeth Stephenson Zolile Mtumela PMSE long term observations using SuperDARN SANAE HF radar measurements Terrestrial, Atmospheric and Oceanic Sciences |
author_facet |
Olakunle Ogunjobi Venkataraman Sivakumar Judy Ann Elizabeth Stephenson Zolile Mtumela |
author_sort |
Olakunle Ogunjobi |
title |
PMSE long term observations using SuperDARN SANAE HF radar measurements |
title_short |
PMSE long term observations using SuperDARN SANAE HF radar measurements |
title_full |
PMSE long term observations using SuperDARN SANAE HF radar measurements |
title_fullStr |
PMSE long term observations using SuperDARN SANAE HF radar measurements |
title_full_unstemmed |
PMSE long term observations using SuperDARN SANAE HF radar measurements |
title_sort |
pmse long term observations using superdarn sanae hf radar measurements |
publisher |
Chinese Geoscience Union |
series |
Terrestrial, Atmospheric and Oceanic Sciences |
issn |
1017-0839 2311-7680 |
publishDate |
2017-01-01 |
description |
It is known that the presence of nanometre-scale ice particles and neutral air turbulence in the Polar summer mesosphere modify the D-region plasma, resulting in strong backscatter. These strong backscatters are referred to as Polar Mesosphere Summer Echoes (PMSE). Although studies on PMSE have been ongoing for over three decades, aspects revealed by various instruments are still the subject of discussion. As a sequel to the paper by Ogunjobi et al. (2015), we report on the long term trends and variations in PMSE occurrence probability from Super Dual Auroral Radar Network (SuperDARN) high frequency (HF) radar measurements over the South African National Antarctic Expedition IV (SANAE IV). In this current paper, a simple multiple-filter technique is employed to obtain the occurrence probability rate for SuperDARN-PMSE during the summer periods for the years 1998 - 2007. The SuperDARN-PMSE occurrence probability rate in relation to geomagnetic activity is examined. The mesospheric neutral winds and temperature trends during these periods, are further studied and presented in this paper. Both the monthly and diurnal variations in occurrence are consistent with previous reports, confirming the presence of PMSE from SuperDARN SANAE IV radar measurements and the influence of pole to pole mesospheric transport circulation. The special mesospheric mean flow observed prior to the year 2002 is ascribed to the influence of solar activity. The SuperDARN-PMSE occurrence probability peaks with lowered geomagnetic activity. These present results support the hypothesis that the particle precipitation also plays an important role in SuperDARN-PMSE occurrence. |
url |
http://tao.cgu.org.tw/media/k2/attachments/v283p371.pdf
|
work_keys_str_mv |
AT olakunleogunjobi pmselongtermobservationsusingsuperdarnsanaehfradarmeasurements AT venkataramansivakumar pmselongtermobservationsusingsuperdarnsanaehfradarmeasurements AT judyannelizabethstephenson pmselongtermobservationsusingsuperdarnsanaehfradarmeasurements AT zolilemtumela pmselongtermobservationsusingsuperdarnsanaehfradarmeasurements |
_version_ |
1725792143303245824 |