Quiver representations and Gorenstein-projective modules

Consider a finite acyclic quiver Q and a quasi-Frobenius ring R. We endow the category of quiver representations over R with a model structure, whose homotopy category is equivalent to the stable category of Gorenstein-projective modules over the path algebra RQ. As an application, we then charac...

Full description

Bibliographic Details
Main Author: Francesco Meazzini
Format: Article
Language:English
Published: Sapienza Università Editrice 2021-01-01
Series:Rendiconti di Matematica e delle Sue Applicazioni
Subjects:
Online Access:https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2021(1)/1-33.pdf
id doaj-5d12f010d51d494293658cc438f4993b
record_format Article
spelling doaj-5d12f010d51d494293658cc438f4993b2020-12-22T15:34:02ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33502021-01-01421133Quiver representations and Gorenstein-projective modulesFrancesco Meazzini0Università degli studi di Roma La Sapienza, Dipartimento di Matematica Guido Castelnuovo, P.le Aldo Moro 5, I-00185 Roma, Italy.Consider a finite acyclic quiver Q and a quasi-Frobenius ring R. We endow the category of quiver representations over R with a model structure, whose homotopy category is equivalent to the stable category of Gorenstein-projective modules over the path algebra RQ. As an application, we then characterize Gorenstein-projective RQ-modules in terms of the corresponding quiver R-representations; this generalizes a result obtained by Luo-Zhang to the case of not necessarily finitely generated RQ-modules, and partially recover results due to Enochs-Estrada-Garc´ıa Rozas, and to Eshraghi-Hafezi-Salarian. Our approach to the problem is completely different since the proofs mainly rely on model category theory.https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2021(1)/1-33.pdfquiver representationsgorenstein-projective modulesmodel categories.
collection DOAJ
language English
format Article
sources DOAJ
author Francesco Meazzini
spellingShingle Francesco Meazzini
Quiver representations and Gorenstein-projective modules
Rendiconti di Matematica e delle Sue Applicazioni
quiver representations
gorenstein-projective modules
model categories.
author_facet Francesco Meazzini
author_sort Francesco Meazzini
title Quiver representations and Gorenstein-projective modules
title_short Quiver representations and Gorenstein-projective modules
title_full Quiver representations and Gorenstein-projective modules
title_fullStr Quiver representations and Gorenstein-projective modules
title_full_unstemmed Quiver representations and Gorenstein-projective modules
title_sort quiver representations and gorenstein-projective modules
publisher Sapienza Università Editrice
series Rendiconti di Matematica e delle Sue Applicazioni
issn 1120-7183
2532-3350
publishDate 2021-01-01
description Consider a finite acyclic quiver Q and a quasi-Frobenius ring R. We endow the category of quiver representations over R with a model structure, whose homotopy category is equivalent to the stable category of Gorenstein-projective modules over the path algebra RQ. As an application, we then characterize Gorenstein-projective RQ-modules in terms of the corresponding quiver R-representations; this generalizes a result obtained by Luo-Zhang to the case of not necessarily finitely generated RQ-modules, and partially recover results due to Enochs-Estrada-Garc´ıa Rozas, and to Eshraghi-Hafezi-Salarian. Our approach to the problem is completely different since the proofs mainly rely on model category theory.
topic quiver representations
gorenstein-projective modules
model categories.
url https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2021(1)/1-33.pdf
work_keys_str_mv AT francescomeazzini quiverrepresentationsandgorensteinprojectivemodules
_version_ 1724374148696768512