Quiver representations and Gorenstein-projective modules
Consider a finite acyclic quiver Q and a quasi-Frobenius ring R. We endow the category of quiver representations over R with a model structure, whose homotopy category is equivalent to the stable category of Gorenstein-projective modules over the path algebra RQ. As an application, we then charac...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Sapienza Università Editrice
2021-01-01
|
Series: | Rendiconti di Matematica e delle Sue Applicazioni |
Subjects: | |
Online Access: | https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2021(1)/1-33.pdf |
id |
doaj-5d12f010d51d494293658cc438f4993b |
---|---|
record_format |
Article |
spelling |
doaj-5d12f010d51d494293658cc438f4993b2020-12-22T15:34:02ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33502021-01-01421133Quiver representations and Gorenstein-projective modulesFrancesco Meazzini0Università degli studi di Roma La Sapienza, Dipartimento di Matematica Guido Castelnuovo, P.le Aldo Moro 5, I-00185 Roma, Italy.Consider a finite acyclic quiver Q and a quasi-Frobenius ring R. We endow the category of quiver representations over R with a model structure, whose homotopy category is equivalent to the stable category of Gorenstein-projective modules over the path algebra RQ. As an application, we then characterize Gorenstein-projective RQ-modules in terms of the corresponding quiver R-representations; this generalizes a result obtained by Luo-Zhang to the case of not necessarily finitely generated RQ-modules, and partially recover results due to Enochs-Estrada-Garc´ıa Rozas, and to Eshraghi-Hafezi-Salarian. Our approach to the problem is completely different since the proofs mainly rely on model category theory.https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2021(1)/1-33.pdfquiver representationsgorenstein-projective modulesmodel categories. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Francesco Meazzini |
spellingShingle |
Francesco Meazzini Quiver representations and Gorenstein-projective modules Rendiconti di Matematica e delle Sue Applicazioni quiver representations gorenstein-projective modules model categories. |
author_facet |
Francesco Meazzini |
author_sort |
Francesco Meazzini |
title |
Quiver representations and Gorenstein-projective modules |
title_short |
Quiver representations and Gorenstein-projective modules |
title_full |
Quiver representations and Gorenstein-projective modules |
title_fullStr |
Quiver representations and Gorenstein-projective modules |
title_full_unstemmed |
Quiver representations and Gorenstein-projective modules |
title_sort |
quiver representations and gorenstein-projective modules |
publisher |
Sapienza Università Editrice |
series |
Rendiconti di Matematica e delle Sue Applicazioni |
issn |
1120-7183 2532-3350 |
publishDate |
2021-01-01 |
description |
Consider a finite acyclic quiver Q and a quasi-Frobenius ring R. We endow the
category of quiver representations over R with a model structure, whose homotopy category is
equivalent to the stable category of Gorenstein-projective modules over the path algebra RQ.
As an application, we then characterize Gorenstein-projective RQ-modules in terms of
the corresponding quiver R-representations; this generalizes a result obtained by Luo-Zhang to
the case of not necessarily finitely generated RQ-modules, and partially recover results due to
Enochs-Estrada-Garc´ıa Rozas, and to Eshraghi-Hafezi-Salarian. Our approach to the problem
is completely different since the proofs mainly rely on model category theory. |
topic |
quiver representations gorenstein-projective modules model categories. |
url |
https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2021(1)/1-33.pdf |
work_keys_str_mv |
AT francescomeazzini quiverrepresentationsandgorensteinprojectivemodules |
_version_ |
1724374148696768512 |