A Study of Using Bethe/Kikuchi Approximation for Learning Directed Graphic Models
This paper applies the variational methods to learn the parameters and the probability of evidence of directed graphic models (also known as Bayesian networks (BNs)) when data contains missing values. One class of variational methods, the Bethe/Kikuchi approximate algorithm, is combined with Expecta...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9530699/ |