Neuroprotective Role of Atractylenolide-I in an In Vitro and In Vivo Model of Parkinson’s Disease
Parkinson’s disease (PD) is an age-related neurological disorder characterized by a loss of dopaminergic neurons within the midbrain. Neuroinflammation has been nominated as one of the key pathogenic features of PD. Recently, the inadequate pharmacotherapy and adverse effects of conventional drugs h...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-05-01
|
Series: | Nutrients |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-6643/9/5/451 |
id |
doaj-5cf2eee9252d42e385028806aa9106b5 |
---|---|
record_format |
Article |
spelling |
doaj-5cf2eee9252d42e385028806aa9106b52020-11-25T02:27:31ZengMDPI AGNutrients2072-66432017-05-019545110.3390/nu9050451nu9050451Neuroprotective Role of Atractylenolide-I in an In Vitro and In Vivo Model of Parkinson’s DiseaseSandeep More0Dong-Kug Choi1Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, KoreaDepartment of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, KoreaParkinson’s disease (PD) is an age-related neurological disorder characterized by a loss of dopaminergic neurons within the midbrain. Neuroinflammation has been nominated as one of the key pathogenic features of PD. Recently, the inadequate pharmacotherapy and adverse effects of conventional drugs have spurred the development of unconventional medications in the treatment of PD. The purpose of this study is to investigate the anti-neuroinflammatory mechanisms of Atractylenolide-I (ATR-I) in in vivo and in vitro models of PD. Nitrite assay was measured via Griess reaction in lipopolysaccharide (LPS) stimulated BV-2 cells. mRNA and protein levels were determined by a reverse transcription-polymerase chain reaction (RT-PCR) and immunoblot analysis, respectively. Further, flow cytometry, immunocytochemistry, and immunohistochemistry were employed in BV-2 cells and MPTP-intoxicated C57BL6/J mice. Pre-treatment with ATR-I attenuated the inflammatory response in BV-2 cells by abating the nuclear translocation of nuclear factor-κB (NF-κB) and by inducing heme oxygenase-1 (HO-1). The intraperitoneal administration of ATR-I reversed MPTP-induced behavioral deficits, decreased microglial activation, and conferred protection to dopaminergic neurons in the mouse model of PD. Our experimental reports establish the involvement of multiple benevolent molecular events by ATR-I in MPTP-induced toxicity, which may aid in the development of ATR-I as a new therapeutic agent for the treatment of PD.http://www.mdpi.com/2072-6643/9/5/451Atractylenolide-IastrocytemicroglianeuroinflammationParkinson’s disease |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sandeep More Dong-Kug Choi |
spellingShingle |
Sandeep More Dong-Kug Choi Neuroprotective Role of Atractylenolide-I in an In Vitro and In Vivo Model of Parkinson’s Disease Nutrients Atractylenolide-I astrocyte microglia neuroinflammation Parkinson’s disease |
author_facet |
Sandeep More Dong-Kug Choi |
author_sort |
Sandeep More |
title |
Neuroprotective Role of Atractylenolide-I in an In Vitro and In Vivo Model of Parkinson’s Disease |
title_short |
Neuroprotective Role of Atractylenolide-I in an In Vitro and In Vivo Model of Parkinson’s Disease |
title_full |
Neuroprotective Role of Atractylenolide-I in an In Vitro and In Vivo Model of Parkinson’s Disease |
title_fullStr |
Neuroprotective Role of Atractylenolide-I in an In Vitro and In Vivo Model of Parkinson’s Disease |
title_full_unstemmed |
Neuroprotective Role of Atractylenolide-I in an In Vitro and In Vivo Model of Parkinson’s Disease |
title_sort |
neuroprotective role of atractylenolide-i in an in vitro and in vivo model of parkinson’s disease |
publisher |
MDPI AG |
series |
Nutrients |
issn |
2072-6643 |
publishDate |
2017-05-01 |
description |
Parkinson’s disease (PD) is an age-related neurological disorder characterized by a loss of dopaminergic neurons within the midbrain. Neuroinflammation has been nominated as one of the key pathogenic features of PD. Recently, the inadequate pharmacotherapy and adverse effects of conventional drugs have spurred the development of unconventional medications in the treatment of PD. The purpose of this study is to investigate the anti-neuroinflammatory mechanisms of Atractylenolide-I (ATR-I) in in vivo and in vitro models of PD. Nitrite assay was measured via Griess reaction in lipopolysaccharide (LPS) stimulated BV-2 cells. mRNA and protein levels were determined by a reverse transcription-polymerase chain reaction (RT-PCR) and immunoblot analysis, respectively. Further, flow cytometry, immunocytochemistry, and immunohistochemistry were employed in BV-2 cells and MPTP-intoxicated C57BL6/J mice. Pre-treatment with ATR-I attenuated the inflammatory response in BV-2 cells by abating the nuclear translocation of nuclear factor-κB (NF-κB) and by inducing heme oxygenase-1 (HO-1). The intraperitoneal administration of ATR-I reversed MPTP-induced behavioral deficits, decreased microglial activation, and conferred protection to dopaminergic neurons in the mouse model of PD. Our experimental reports establish the involvement of multiple benevolent molecular events by ATR-I in MPTP-induced toxicity, which may aid in the development of ATR-I as a new therapeutic agent for the treatment of PD. |
topic |
Atractylenolide-I astrocyte microglia neuroinflammation Parkinson’s disease |
url |
http://www.mdpi.com/2072-6643/9/5/451 |
work_keys_str_mv |
AT sandeepmore neuroprotectiveroleofatractylenolideiinaninvitroandinvivomodelofparkinsonsdisease AT dongkugchoi neuroprotectiveroleofatractylenolideiinaninvitroandinvivomodelofparkinsonsdisease |
_version_ |
1724842683459960832 |