The Study for Synchronization between Two Coupled FitzHugh-Nagumo Neurons Based on the Laplace Transform and the Adomian Decomposition Method

The synchronization between two coupled FitzHugh-Nagumo (FHN) neurons with or without external current is studied by using the Laplace transform and the Adomian decomposition method. Different from other researches, the synchronization error system is expressed as sets of Volterra integral equations...

Full description

Bibliographic Details
Main Authors: Bin Zhen, Zigen Song
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Neural Plasticity
Online Access:http://dx.doi.org/10.1155/2021/6657835
Description
Summary:The synchronization between two coupled FitzHugh-Nagumo (FHN) neurons with or without external current is studied by using the Laplace transform and the Adomian decomposition method. Different from other researches, the synchronization error system is expressed as sets of Volterra integral equations based on the convolution theorem in the Laplace transform. Then, it is easy to analytically obtain the conditions that synchronization errors disappear based on the successive approximation method in integral equation theorem, the correctness of which is verified by numerical simulations. Furthermore, the synchronous dynamics of the two coupled FHN neurons also can be written in the form of Volterra integral equations, which is more convenient to analytically solve by using the Adomian decomposition method. It is found that the occurrence of synchronization between the two FHN neurons only depends on the coupling strength and is irrelevant to the external current. Only synchronous rest state in the two FHN neurons without external current can be achieved, while synchronous spikes appear if the external current is not zero.
ISSN:1687-5443