Anticancer activity of synthetic (±)-kusunokinin and its derivative (±)-bursehernin on human cancer cell lines

Kusunokinin is a potent lignan compound with a several biological properties including antitrypanosomal and anticancer. In this study, (±)-kusunokinin and its derivative, (±)-bursehernin, were synthesized and investigated for their anticancer activities on cell viability, cell cycle arrest and apopt...

Full description

Bibliographic Details
Main Authors: Thidarath Rattanaburee, Tienthong Thongpanchang, Krittaphat Wongma, Aman Tedasen, Yaowapa Sukpondma, Potchanapond Graidist
Format: Article
Language:English
Published: Elsevier 2019-09-01
Series:Biomedicine & Pharmacotherapy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0753332219315823
Description
Summary:Kusunokinin is a potent lignan compound with a several biological properties including antitrypanosomal and anticancer. In this study, (±)-kusunokinin and its derivative, (±)-bursehernin, were synthesized and investigated for their anticancer activities on cell viability, cell cycle arrest and apoptosis in cancer cell lines including breast cancer (MCF-7, MDA-MB-468 and MDA-MB-231), colon cancer (HT-29) and cholangiocarcinoma (KKU-K100, KKU-M213 and KKU-M055) cells. The result showed that (±)-kusunokinin and (±)-bursehernin represented the strongest growth inhibition against breast cancer (MCF-7) and cholangiocarcinoma (KKU-M213) cells with the IC50 values of 4.30 ± 0.65 μM and 3.70 ± 0.79 μM, respectively, both of which were lower than IC50 of normal fibroblast cells (L929). Etoposide was used as a positive control since this chemotherapeutic drug is in the lignan group same as (±)-kusunokinin. Surprisingly, etoposide showed less cytotoxicity than (±)-kusunokinin and its derivative on MCF-7, HT-29, KKU-M213 and KKU-K100. Moreover, (±)-bursehernin induced cell cycle arrest at G2/M phase, meanwhile (±)-kusunokinin tended to increased cell population at G2/M phase but did not show the significant difference compared with non-treated cells. Interestingly, protein levels related to cell proliferation pathway (topoisomerase II, STAT3, cyclin D1, and p21) were significantly decreased at 72 h. Both compounds induced apoptotic cell in time-dependent manner as confirmed by MultiCaspase assay. In conclusion, synthetic compound, (±)-kusunokinin and (±)-bursehernin, showed anticancer effects via the reduction of cell proliferation proteins and induction of apoptosis.
ISSN:0753-3322