Inhibition is associated with whole-brain structural brain connectivity on network level in school-aged children born very preterm and at term

Inhibition abilities are often impaired in children born very preterm. In typically-developing individuals, inhibition has been associated with structural brain connectivity (SC). As SC is frequently altered following preterm birth, this study investigated whether aberrant SC underlies inhibition de...

Full description

Bibliographic Details
Main Authors: Vera Disselhoff, Andras Jakab, Barbara Schnider, Beatrice Latal, Flavia M. Wehrle, Cornelia F. Hagmann
Format: Article
Language:English
Published: Elsevier 2020-09-01
Series:NeuroImage
Online Access:http://www.sciencedirect.com/science/article/pii/S1053811920304237
Description
Summary:Inhibition abilities are often impaired in children born very preterm. In typically-developing individuals, inhibition has been associated with structural brain connectivity (SC). As SC is frequently altered following preterm birth, this study investigated whether aberrant SC underlies inhibition deficits in school-aged children born very preterm. In a group of 67 very preterm participants aged 8–13 years and 69 term-born peers, inhibition abilities were assessed with two tasks. In a subgroup of 50 very preterm and 62 term-born participants, diffusion tensor imaging (DTI) data were collected. Using network-based statistics (NBS), mean fractional anisotropy (FAmean) was compared between groups. Associations of FAmean and inhibition abilities were explored through linear regression. The composite score of inhibition abilities was lower in the very preterm group (M ​= ​−0.4, SD ​= ​0.8) than in the term-born group (M ​= ​0.0, SD ​= ​0.8) but group differences were not significant when adjusting for age, sex and socio-economic status (β ​= ​−0.13, 95%-CI [-0.30, 0.04], p ​= ​0.13). In the very preterm group, FAmean was significantly lower in a network comprising thalamo-frontal, thalamo-temporal, frontal, cerebellar and intra-hemispheric connections than in the term-born group (t ​= ​5.21, lowest p-value ​= ​0.001). Irrespective of birth status, a network comprising parietal, cerebellar and subcortical connections was positively associated with inhibition abilities (t ​= ​4.23, lowest p-value ​= ​0.02). Very preterm birth results in long-term alterations of SC at network-level. As networks underlying inhibition abilities do not overlap with those differing between the groups, FAmean may not be adequate to explain inhibition problems in very preterm children. Future studies should combine complementary measures of brain connectivity to address neural correlates of inhibition abilities.
ISSN:1095-9572