Inhibitory Effects of Biomass Degradation Products on Ethanol Fermentation and a Strategy to Overcome Them

The influence of buffers, as well as inhibitors such as formic acid, furfural, HMF, guaiacol, and vanillin, on ethanol formation was investigated. Compared to phosphoric buffer, the acetic and citric buffers were less inhibitory on ethanol fermentation. The addition of formic acid (2.5 g/L) to the b...

Full description

Bibliographic Details
Main Authors: Shiyu Fu, Jinfeng Hu, Hao Liu
Format: Article
Language:English
Published: North Carolina State University 2014-06-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_09_3_4323_Fu_Inhibitory_Biomass_Degradation
Description
Summary:The influence of buffers, as well as inhibitors such as formic acid, furfural, HMF, guaiacol, and vanillin, on ethanol formation was investigated. Compared to phosphoric buffer, the acetic and citric buffers were less inhibitory on ethanol fermentation. The addition of formic acid (2.5 g/L) to the buffer reduced the ethanol yield by 8%. Guaiacol (3 g/L) and vanillin (2.5 g/L) decreased ethanol production by 50% and 20%, respectively. Furfural and HMF delayed the yeast fermentation without reducing the total yield. The fermentation was seriously inhibited by the mixture of furfural (1 g/L), HMF (1 g/L), formic acid (1 g/L), vanillin (1 g/L), and guaiacol (1 g/L). The ethanol yield of the fermentation based on enzymatic hydrolyzate from treated biomass was 82%. The addition of 1 g/L MgSO4 as a shielding protector rehabilitated nearly 100% of the total yield.
ISSN:1930-2126
1930-2126