Biomechanical parameter assessment for classification of Parkinson’s disease on clinical scale
The primary goal of this study was to investigate computerized assessment methods to classify motor dysfunctioning of patients with Parkinson’s disease on the clinical scale. In this proposed system, machine learning–based computerized assessment methods were introduced to assess the motor performan...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2017-05-01
|
Series: | International Journal of Distributed Sensor Networks |
Online Access: | https://doi.org/10.1177/1550147717707417 |
id |
doaj-5bf29069ebe3496b93dfc7f0b6863634 |
---|---|
record_format |
Article |
spelling |
doaj-5bf29069ebe3496b93dfc7f0b68636342020-11-25T03:20:54ZengSAGE PublishingInternational Journal of Distributed Sensor Networks1550-14772017-05-011310.1177/1550147717707417Biomechanical parameter assessment for classification of Parkinson’s disease on clinical scaleAbdul Haleem Butt0Erika Rovini1Dario Esposito2Giuseppe Rossi3Carlo Maremmani4Filippo Cavallo5The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, ItalyThe BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, ItalyThe BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, ItalyInstitute of Clinical Physiology, National Research Council, Pisa, ItalyArea Health Authority District 1, Neurology Operative Unit, Carrara, ItalyThe BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, ItalyThe primary goal of this study was to investigate computerized assessment methods to classify motor dysfunctioning of patients with Parkinson’s disease on the clinical scale. In this proposed system, machine learning–based computerized assessment methods were introduced to assess the motor performance of patients with Parkinson’s disease. Biomechanical parameters were acquired from six exercises through wearable inertial sensors: SensFoot V2 and SensHand V1. All patients were evaluated via neurologist by means of the clinical scale. The average rating was calculated from all exercise ratings given by clinicians to estimate overall rating for each patient. Patients were divided in two groups: slight–mild patients with Parkinson’s disease and moderate–severe patients with Parkinson’s disease according to average rating (“0: slight and mild” and “1: moderate and severe”). Feature selection methods were used for the selection of significant features. Selected features were trained in support vector machine, logistic regression, and neural network to classify the two groups of patients. The highest classification accuracy obtained by support vector machine classifier was 79.66%, with 0.8790 area under the curve. A 76.2% classification accuracy was obtained with 0.7832 area under the curve through logistic regression. A 83.10% classification accuracy was obtained by neural network classifier, with 0.889 area under the curve. Strong distinguishability of the models between the two groups directs the high possibility of motor impairment classification through biomechanical parameters in patients with Parkinson’s disease based on the clinical scale.https://doi.org/10.1177/1550147717707417 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Abdul Haleem Butt Erika Rovini Dario Esposito Giuseppe Rossi Carlo Maremmani Filippo Cavallo |
spellingShingle |
Abdul Haleem Butt Erika Rovini Dario Esposito Giuseppe Rossi Carlo Maremmani Filippo Cavallo Biomechanical parameter assessment for classification of Parkinson’s disease on clinical scale International Journal of Distributed Sensor Networks |
author_facet |
Abdul Haleem Butt Erika Rovini Dario Esposito Giuseppe Rossi Carlo Maremmani Filippo Cavallo |
author_sort |
Abdul Haleem Butt |
title |
Biomechanical parameter assessment for classification of Parkinson’s disease on clinical scale |
title_short |
Biomechanical parameter assessment for classification of Parkinson’s disease on clinical scale |
title_full |
Biomechanical parameter assessment for classification of Parkinson’s disease on clinical scale |
title_fullStr |
Biomechanical parameter assessment for classification of Parkinson’s disease on clinical scale |
title_full_unstemmed |
Biomechanical parameter assessment for classification of Parkinson’s disease on clinical scale |
title_sort |
biomechanical parameter assessment for classification of parkinson’s disease on clinical scale |
publisher |
SAGE Publishing |
series |
International Journal of Distributed Sensor Networks |
issn |
1550-1477 |
publishDate |
2017-05-01 |
description |
The primary goal of this study was to investigate computerized assessment methods to classify motor dysfunctioning of patients with Parkinson’s disease on the clinical scale. In this proposed system, machine learning–based computerized assessment methods were introduced to assess the motor performance of patients with Parkinson’s disease. Biomechanical parameters were acquired from six exercises through wearable inertial sensors: SensFoot V2 and SensHand V1. All patients were evaluated via neurologist by means of the clinical scale. The average rating was calculated from all exercise ratings given by clinicians to estimate overall rating for each patient. Patients were divided in two groups: slight–mild patients with Parkinson’s disease and moderate–severe patients with Parkinson’s disease according to average rating (“0: slight and mild” and “1: moderate and severe”). Feature selection methods were used for the selection of significant features. Selected features were trained in support vector machine, logistic regression, and neural network to classify the two groups of patients. The highest classification accuracy obtained by support vector machine classifier was 79.66%, with 0.8790 area under the curve. A 76.2% classification accuracy was obtained with 0.7832 area under the curve through logistic regression. A 83.10% classification accuracy was obtained by neural network classifier, with 0.889 area under the curve. Strong distinguishability of the models between the two groups directs the high possibility of motor impairment classification through biomechanical parameters in patients with Parkinson’s disease based on the clinical scale. |
url |
https://doi.org/10.1177/1550147717707417 |
work_keys_str_mv |
AT abdulhaleembutt biomechanicalparameterassessmentforclassificationofparkinsonsdiseaseonclinicalscale AT erikarovini biomechanicalparameterassessmentforclassificationofparkinsonsdiseaseonclinicalscale AT darioesposito biomechanicalparameterassessmentforclassificationofparkinsonsdiseaseonclinicalscale AT giusepperossi biomechanicalparameterassessmentforclassificationofparkinsonsdiseaseonclinicalscale AT carlomaremmani biomechanicalparameterassessmentforclassificationofparkinsonsdiseaseonclinicalscale AT filippocavallo biomechanicalparameterassessmentforclassificationofparkinsonsdiseaseonclinicalscale |
_version_ |
1724615821916897280 |