The Pisciarelli main fumarole mechanisms reconstructed by electrical resistivity and induced polarization imaging
Abstract Pisciarelli, together with the adjacent Solfatara maar-diatreme, represents the most active structure of the Campi Flegrei caldera (Italy) in terms of degassing and seismic activity. This paper aims to define the structure of the Pisciarelli hydrothermal system (down to a 20 m depth) throug...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-09-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-97413-1 |
id |
doaj-5bd470ae90154e7090a1772a31b4fcba |
---|---|
record_format |
Article |
spelling |
doaj-5bd470ae90154e7090a1772a31b4fcba2021-09-26T11:30:56ZengNature Publishing GroupScientific Reports2045-23222021-09-0111111710.1038/s41598-021-97413-1The Pisciarelli main fumarole mechanisms reconstructed by electrical resistivity and induced polarization imagingA. Troiano0R. Isaia1F. D. A. Tramparulo2M. G. Di Giuseppe3Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli ‘Osservatorio Vesuviano’Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli ‘Osservatorio Vesuviano’Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli ‘Osservatorio Vesuviano’Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli ‘Osservatorio Vesuviano’Abstract Pisciarelli, together with the adjacent Solfatara maar-diatreme, represents the most active structure of the Campi Flegrei caldera (Italy) in terms of degassing and seismic activity. This paper aims to define the structure of the Pisciarelli hydrothermal system (down to a 20 m depth) through electrical resistivity and time-domain-induced polarization tomography and self-potential mapping. The retrieved 3D image of the area helps reconstruct the Pisciarelli subsurface in its area of maximum degassing, containing the main fumarole (“soffione”) and the mud pool. In particular, a channel has been identified in which fluids stored in a deeper reservoir rise toward the surface. Such a structure seems to be surmounted by a clay-cap formation that could govern the circulation of fluids and the abundance of gases/vapors emitted by the soffione. Based on this new reconstruction of the Pisciarelli fumarolic field structural setting, the first conceptual model has been suggested that is capable of simultaneously explaining the mechanisms governing soffione activity and elucidating the role played by the fluid/gas of deeper origin in the shallow fluid circulation system. The proposed model can potentially help to better monitor the processes occurring throughout the Pisciarelli fumarolic field and provide an evaluation of the associated hazards.https://doi.org/10.1038/s41598-021-97413-1 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Troiano R. Isaia F. D. A. Tramparulo M. G. Di Giuseppe |
spellingShingle |
A. Troiano R. Isaia F. D. A. Tramparulo M. G. Di Giuseppe The Pisciarelli main fumarole mechanisms reconstructed by electrical resistivity and induced polarization imaging Scientific Reports |
author_facet |
A. Troiano R. Isaia F. D. A. Tramparulo M. G. Di Giuseppe |
author_sort |
A. Troiano |
title |
The Pisciarelli main fumarole mechanisms reconstructed by electrical resistivity and induced polarization imaging |
title_short |
The Pisciarelli main fumarole mechanisms reconstructed by electrical resistivity and induced polarization imaging |
title_full |
The Pisciarelli main fumarole mechanisms reconstructed by electrical resistivity and induced polarization imaging |
title_fullStr |
The Pisciarelli main fumarole mechanisms reconstructed by electrical resistivity and induced polarization imaging |
title_full_unstemmed |
The Pisciarelli main fumarole mechanisms reconstructed by electrical resistivity and induced polarization imaging |
title_sort |
pisciarelli main fumarole mechanisms reconstructed by electrical resistivity and induced polarization imaging |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2021-09-01 |
description |
Abstract Pisciarelli, together with the adjacent Solfatara maar-diatreme, represents the most active structure of the Campi Flegrei caldera (Italy) in terms of degassing and seismic activity. This paper aims to define the structure of the Pisciarelli hydrothermal system (down to a 20 m depth) through electrical resistivity and time-domain-induced polarization tomography and self-potential mapping. The retrieved 3D image of the area helps reconstruct the Pisciarelli subsurface in its area of maximum degassing, containing the main fumarole (“soffione”) and the mud pool. In particular, a channel has been identified in which fluids stored in a deeper reservoir rise toward the surface. Such a structure seems to be surmounted by a clay-cap formation that could govern the circulation of fluids and the abundance of gases/vapors emitted by the soffione. Based on this new reconstruction of the Pisciarelli fumarolic field structural setting, the first conceptual model has been suggested that is capable of simultaneously explaining the mechanisms governing soffione activity and elucidating the role played by the fluid/gas of deeper origin in the shallow fluid circulation system. The proposed model can potentially help to better monitor the processes occurring throughout the Pisciarelli fumarolic field and provide an evaluation of the associated hazards. |
url |
https://doi.org/10.1038/s41598-021-97413-1 |
work_keys_str_mv |
AT atroiano thepisciarellimainfumarolemechanismsreconstructedbyelectricalresistivityandinducedpolarizationimaging AT risaia thepisciarellimainfumarolemechanismsreconstructedbyelectricalresistivityandinducedpolarizationimaging AT fdatramparulo thepisciarellimainfumarolemechanismsreconstructedbyelectricalresistivityandinducedpolarizationimaging AT mgdigiuseppe thepisciarellimainfumarolemechanismsreconstructedbyelectricalresistivityandinducedpolarizationimaging AT atroiano pisciarellimainfumarolemechanismsreconstructedbyelectricalresistivityandinducedpolarizationimaging AT risaia pisciarellimainfumarolemechanismsreconstructedbyelectricalresistivityandinducedpolarizationimaging AT fdatramparulo pisciarellimainfumarolemechanismsreconstructedbyelectricalresistivityandinducedpolarizationimaging AT mgdigiuseppe pisciarellimainfumarolemechanismsreconstructedbyelectricalresistivityandinducedpolarizationimaging |
_version_ |
1716867933157720064 |