Integrating Co-Clustering and Interpretable Machine Learning for the Prediction of Intravenous Immunoglobulin Resistance in Kawasaki Disease
Identifying intravenous immunoglobulin-resistant patients is essential for the prompt and optimal treatment of Kawasaki disease, suggesting the need for effective risk assessment tools. Data-driven approaches have the potential to identify the high-risk individuals by capturing the complex patterns...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9097874/ |