Cross-Correlation Algorithm-Based Optimization of Aliasing Signals for Inductive Debris Sensors

An inductive debris sensor can monitor a mechanical system’s debris in real time. The measuring accuracy is significantly affected by the signal aliasing issue happening in the monitoring process. In this study, a mathematical model was built to explain two debris particles’ aliasing behavior. Then,...

Full description

Bibliographic Details
Main Authors: Xingjian Wang, Hanyu Sun, Shaoping Wang, Wenhao Huang
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/20/5949
Description
Summary:An inductive debris sensor can monitor a mechanical system’s debris in real time. The measuring accuracy is significantly affected by the signal aliasing issue happening in the monitoring process. In this study, a mathematical model was built to explain two debris particles’ aliasing behavior. Then, a cross-correlation-based method was proposed to deal with this aliasing. Afterwards, taking advantage of the processed signal along with the original signal, an optimization strategy was proposed to make the evaluation of the aliasing debris more accurate than that merely using initial signals. Compared to other methods, the proposed method has fewer limitations in practical applications. The simulation and experimental results also verified the advantage of the proposed method.
ISSN:1424-8220