Optimized Placement of Onshore Wind Farms Considering Topography

As the scale of onshore wind farms are increasing, the influence of wake behavior on power production becomes increasingly significant. Wind turbines sittings in onshore wind farms should take terrain into consideration including height change and slope curvature. However, optimized wind turbine (WT...

Full description

Bibliographic Details
Main Authors: Xiawei Wu, Weihao Hu, Qi Huang, Cong Chen, Zhe Chen, Frede Blaabjerg
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/15/2944
Description
Summary:As the scale of onshore wind farms are increasing, the influence of wake behavior on power production becomes increasingly significant. Wind turbines sittings in onshore wind farms should take terrain into consideration including height change and slope curvature. However, optimized wind turbine (WT) placement for onshore wind farms considering both topographic amplitude and wake interaction is realistic. In this paper, an approach for optimized placement of onshore wind farms considering the topography as well as the wake effect is proposed. Based on minimizing the levelized production cost (LPC), the placement of WTs was optimized considering topography and the effect of this on WTs interactions. The results indicated that the proposed method was effective for finding the optimized layout for uneven onshore wind farms. The optimization method is applicable for optimized placement of onshore wind farms and can be extended to different topographic conditions.
ISSN:1996-1073