The Transverse Ultrasonogram of Thyroid Papillary Carcinoma Has a Better Prediction Accuracy Than the Longitudinal One

Thyroid produces multiple essential hormones for vital life processes. Thyroid cancer has no symptoms and may be detected by ultrasound imaging incidentally for other medical conditions. An accurate computational detection model may help the precise diagnose of thyroid papillary cancer (TPC). A stan...

Full description

Bibliographic Details
Main Authors: Bingxin Yu, Zhongyu Wang, Renxiang Zhu, Xin Feng, Mingran Qi, Jialiang Li, Ruixue Zhao, Lan Huang, Ruihao Xin, Fan Li, Fengfeng Zhou
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8753680/
id doaj-5b9f8baa5a1d4bc2ae8bd64da859a153
record_format Article
spelling doaj-5b9f8baa5a1d4bc2ae8bd64da859a1532021-04-05T17:18:30ZengIEEEIEEE Access2169-35362019-01-01710076310077010.1109/ACCESS.2019.29263778753680The Transverse Ultrasonogram of Thyroid Papillary Carcinoma Has a Better Prediction Accuracy Than the Longitudinal OneBingxin Yu0Zhongyu Wang1Renxiang Zhu2Xin Feng3Mingran Qi4Jialiang Li5Ruixue Zhao6Lan Huang7Ruihao Xin8Fan Li9Fengfeng Zhou10https://orcid.org/0000-0002-8108-6007Department of Pathogenobiology, Chinese Ministry of Education, College of Basic Medicine, Key Laboratory of Zoonosis, Jilin University, Changchun, ChinaBioKnow Health Informatics Laboratory, College of Computer Science and Technology, Jilin University, Changchun, ChinaBioKnow Health Informatics Laboratory, College of Computer Science and Technology, Jilin University, Changchun, ChinaBioKnow Health Informatics Laboratory, College of Computer Science and Technology, Jilin University, Changchun, ChinaDepartment of Pathogenobiology, Chinese Ministry of Education, College of Basic Medicine, Key Laboratory of Zoonosis, Jilin University, Changchun, ChinaBioKnow Health Informatics Laboratory, College of Computer Science and Technology, Jilin University, Changchun, ChinaBioKnow Health Informatics Laboratory, College of Computer Science and Technology, Jilin University, Changchun, ChinaKey Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Changchun, ChinaCollege of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, ChinaDepartment of Pathogenobiology, Chinese Ministry of Education, College of Basic Medicine, Key Laboratory of Zoonosis, Jilin University, Changchun, ChinaBioKnow Health Informatics Laboratory, College of Computer Science and Technology, Jilin University, Changchun, ChinaThyroid produces multiple essential hormones for vital life processes. Thyroid cancer has no symptoms and may be detected by ultrasound imaging incidentally for other medical conditions. An accurate computational detection model may help the precise diagnose of thyroid papillary cancer (TPC). A standard protocol captures at least the transverse and longitudinal ultrasonograms of the thyroid. This study investigated the detection problem of thyroid cancer using the ultrasound images. Our data suggested that the original local binary pattern (LBP) features extracted from the ultrasonograms were very sparse and the compressed LBP features outperformed the original version. And the best model (Acc = 0.9829) was achieved by the fivefold cross validation of the classifier support vector machine (SVM). Other sources of biomedical data may be integrated to further improve the TPC detection model in future studies.https://ieeexplore.ieee.org/document/8753680/Thyroid pappilary carcinoma (TPC)transverse ultrasonogramlongitudinal ultrasonogramsupport vector machine (SVM)local binary pattern (LBP)
collection DOAJ
language English
format Article
sources DOAJ
author Bingxin Yu
Zhongyu Wang
Renxiang Zhu
Xin Feng
Mingran Qi
Jialiang Li
Ruixue Zhao
Lan Huang
Ruihao Xin
Fan Li
Fengfeng Zhou
spellingShingle Bingxin Yu
Zhongyu Wang
Renxiang Zhu
Xin Feng
Mingran Qi
Jialiang Li
Ruixue Zhao
Lan Huang
Ruihao Xin
Fan Li
Fengfeng Zhou
The Transverse Ultrasonogram of Thyroid Papillary Carcinoma Has a Better Prediction Accuracy Than the Longitudinal One
IEEE Access
Thyroid pappilary carcinoma (TPC)
transverse ultrasonogram
longitudinal ultrasonogram
support vector machine (SVM)
local binary pattern (LBP)
author_facet Bingxin Yu
Zhongyu Wang
Renxiang Zhu
Xin Feng
Mingran Qi
Jialiang Li
Ruixue Zhao
Lan Huang
Ruihao Xin
Fan Li
Fengfeng Zhou
author_sort Bingxin Yu
title The Transverse Ultrasonogram of Thyroid Papillary Carcinoma Has a Better Prediction Accuracy Than the Longitudinal One
title_short The Transverse Ultrasonogram of Thyroid Papillary Carcinoma Has a Better Prediction Accuracy Than the Longitudinal One
title_full The Transverse Ultrasonogram of Thyroid Papillary Carcinoma Has a Better Prediction Accuracy Than the Longitudinal One
title_fullStr The Transverse Ultrasonogram of Thyroid Papillary Carcinoma Has a Better Prediction Accuracy Than the Longitudinal One
title_full_unstemmed The Transverse Ultrasonogram of Thyroid Papillary Carcinoma Has a Better Prediction Accuracy Than the Longitudinal One
title_sort transverse ultrasonogram of thyroid papillary carcinoma has a better prediction accuracy than the longitudinal one
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2019-01-01
description Thyroid produces multiple essential hormones for vital life processes. Thyroid cancer has no symptoms and may be detected by ultrasound imaging incidentally for other medical conditions. An accurate computational detection model may help the precise diagnose of thyroid papillary cancer (TPC). A standard protocol captures at least the transverse and longitudinal ultrasonograms of the thyroid. This study investigated the detection problem of thyroid cancer using the ultrasound images. Our data suggested that the original local binary pattern (LBP) features extracted from the ultrasonograms were very sparse and the compressed LBP features outperformed the original version. And the best model (Acc = 0.9829) was achieved by the fivefold cross validation of the classifier support vector machine (SVM). Other sources of biomedical data may be integrated to further improve the TPC detection model in future studies.
topic Thyroid pappilary carcinoma (TPC)
transverse ultrasonogram
longitudinal ultrasonogram
support vector machine (SVM)
local binary pattern (LBP)
url https://ieeexplore.ieee.org/document/8753680/
work_keys_str_mv AT bingxinyu thetransverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT zhongyuwang thetransverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT renxiangzhu thetransverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT xinfeng thetransverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT mingranqi thetransverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT jialiangli thetransverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT ruixuezhao thetransverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT lanhuang thetransverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT ruihaoxin thetransverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT fanli thetransverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT fengfengzhou thetransverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT bingxinyu transverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT zhongyuwang transverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT renxiangzhu transverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT xinfeng transverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT mingranqi transverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT jialiangli transverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT ruixuezhao transverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT lanhuang transverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT ruihaoxin transverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT fanli transverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
AT fengfengzhou transverseultrasonogramofthyroidpapillarycarcinomahasabetterpredictionaccuracythanthelongitudinalone
_version_ 1721539909192253440