Specific visualization of nitric oxide in the vasculature with two-photon microscopy using a copper based fluorescent probe.
To study the role and (sub) cellular nitric oxide (NO) constitution in various disease processes, its direct and specific detection in living cells and tissues is a major requirement. Several methods are available to measure the oxidation products of NO, but the detection of NO itself has proved cha...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3781046?pdf=render |
id |
doaj-5b9a6f283f654dff89e80acdfd4f6228 |
---|---|
record_format |
Article |
spelling |
doaj-5b9a6f283f654dff89e80acdfd4f62282020-11-24T22:25:56ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0189e7533110.1371/journal.pone.0075331Specific visualization of nitric oxide in the vasculature with two-photon microscopy using a copper based fluorescent probe.Mitrajit GhoshNynke M S van den AkkerKarolina A P WijnandsMartijn PoezeChristian WeberLindsey E McQuadeMichael D PluthStephen J LippardMark J PostDaniel G M MolinMarc A M J van ZandvoortTo study the role and (sub) cellular nitric oxide (NO) constitution in various disease processes, its direct and specific detection in living cells and tissues is a major requirement. Several methods are available to measure the oxidation products of NO, but the detection of NO itself has proved challenging. We visualized NO production using a NO-sensitive copper-based fluorescent probe (Cu 2FL2E) and two-photon laser scanning microscopy (TPLSM). Cu 2FL2E demonstrated high sensitivity and specificity for NO synthesis, combined with low cytotoxicity. Furthermore, Cu 2FL2E showed superior sensitivity over the conventionally used Griess assay. NO specificity of Cu 2FL2E was confirmed in vitro in human coronary arterial endothelial cells and porcine aortic endothelial cells using various triggers for NO production. Using TPLSM on ex vivo mounted murine carotid artery and aorta, the applicability of the probe to image NO production in both endothelial cells and smooth muscle cells was shown. NO-production and time course was detected for multiple stimuli such as flow, acetylcholine and hydrogen peroxide and its correlation with vasodilation was demonstrated. NO-specific fluorescence and vasodilation was abrogated in the presence of NO-synthesis blocker L-NAME. Finally, the influence of carotid precontraction and vasorelaxation validated the functional properties of vessels. Specific visualization of NO production in vessels with Cu 2FL2E-TPLSM provides a valid method for studying spatial-temporal synthesis of NO in vascular biology at an unprecedented level. This approach enables investigation of the pathways involved in the complex interplay between NO and vascular (dys) function.http://europepmc.org/articles/PMC3781046?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mitrajit Ghosh Nynke M S van den Akker Karolina A P Wijnands Martijn Poeze Christian Weber Lindsey E McQuade Michael D Pluth Stephen J Lippard Mark J Post Daniel G M Molin Marc A M J van Zandvoort |
spellingShingle |
Mitrajit Ghosh Nynke M S van den Akker Karolina A P Wijnands Martijn Poeze Christian Weber Lindsey E McQuade Michael D Pluth Stephen J Lippard Mark J Post Daniel G M Molin Marc A M J van Zandvoort Specific visualization of nitric oxide in the vasculature with two-photon microscopy using a copper based fluorescent probe. PLoS ONE |
author_facet |
Mitrajit Ghosh Nynke M S van den Akker Karolina A P Wijnands Martijn Poeze Christian Weber Lindsey E McQuade Michael D Pluth Stephen J Lippard Mark J Post Daniel G M Molin Marc A M J van Zandvoort |
author_sort |
Mitrajit Ghosh |
title |
Specific visualization of nitric oxide in the vasculature with two-photon microscopy using a copper based fluorescent probe. |
title_short |
Specific visualization of nitric oxide in the vasculature with two-photon microscopy using a copper based fluorescent probe. |
title_full |
Specific visualization of nitric oxide in the vasculature with two-photon microscopy using a copper based fluorescent probe. |
title_fullStr |
Specific visualization of nitric oxide in the vasculature with two-photon microscopy using a copper based fluorescent probe. |
title_full_unstemmed |
Specific visualization of nitric oxide in the vasculature with two-photon microscopy using a copper based fluorescent probe. |
title_sort |
specific visualization of nitric oxide in the vasculature with two-photon microscopy using a copper based fluorescent probe. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2013-01-01 |
description |
To study the role and (sub) cellular nitric oxide (NO) constitution in various disease processes, its direct and specific detection in living cells and tissues is a major requirement. Several methods are available to measure the oxidation products of NO, but the detection of NO itself has proved challenging. We visualized NO production using a NO-sensitive copper-based fluorescent probe (Cu 2FL2E) and two-photon laser scanning microscopy (TPLSM). Cu 2FL2E demonstrated high sensitivity and specificity for NO synthesis, combined with low cytotoxicity. Furthermore, Cu 2FL2E showed superior sensitivity over the conventionally used Griess assay. NO specificity of Cu 2FL2E was confirmed in vitro in human coronary arterial endothelial cells and porcine aortic endothelial cells using various triggers for NO production. Using TPLSM on ex vivo mounted murine carotid artery and aorta, the applicability of the probe to image NO production in both endothelial cells and smooth muscle cells was shown. NO-production and time course was detected for multiple stimuli such as flow, acetylcholine and hydrogen peroxide and its correlation with vasodilation was demonstrated. NO-specific fluorescence and vasodilation was abrogated in the presence of NO-synthesis blocker L-NAME. Finally, the influence of carotid precontraction and vasorelaxation validated the functional properties of vessels. Specific visualization of NO production in vessels with Cu 2FL2E-TPLSM provides a valid method for studying spatial-temporal synthesis of NO in vascular biology at an unprecedented level. This approach enables investigation of the pathways involved in the complex interplay between NO and vascular (dys) function. |
url |
http://europepmc.org/articles/PMC3781046?pdf=render |
work_keys_str_mv |
AT mitrajitghosh specificvisualizationofnitricoxideinthevasculaturewithtwophotonmicroscopyusingacopperbasedfluorescentprobe AT nynkemsvandenakker specificvisualizationofnitricoxideinthevasculaturewithtwophotonmicroscopyusingacopperbasedfluorescentprobe AT karolinaapwijnands specificvisualizationofnitricoxideinthevasculaturewithtwophotonmicroscopyusingacopperbasedfluorescentprobe AT martijnpoeze specificvisualizationofnitricoxideinthevasculaturewithtwophotonmicroscopyusingacopperbasedfluorescentprobe AT christianweber specificvisualizationofnitricoxideinthevasculaturewithtwophotonmicroscopyusingacopperbasedfluorescentprobe AT lindseyemcquade specificvisualizationofnitricoxideinthevasculaturewithtwophotonmicroscopyusingacopperbasedfluorescentprobe AT michaeldpluth specificvisualizationofnitricoxideinthevasculaturewithtwophotonmicroscopyusingacopperbasedfluorescentprobe AT stephenjlippard specificvisualizationofnitricoxideinthevasculaturewithtwophotonmicroscopyusingacopperbasedfluorescentprobe AT markjpost specificvisualizationofnitricoxideinthevasculaturewithtwophotonmicroscopyusingacopperbasedfluorescentprobe AT danielgmmolin specificvisualizationofnitricoxideinthevasculaturewithtwophotonmicroscopyusingacopperbasedfluorescentprobe AT marcamjvanzandvoort specificvisualizationofnitricoxideinthevasculaturewithtwophotonmicroscopyusingacopperbasedfluorescentprobe |
_version_ |
1725755599406235648 |