Approximation properties of some two-layer feedforward neural networks
In this article, we present a multivariate two-layer feedforward neural networks that approximate continuous functions defined on \([0,1]^d\). We show that the \(L_1\) error of approximation is asymptotically proportional to the modulus of continuity of the underlying function taken at \(\sqrt{d}/n\...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2007-01-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | http://www.opuscula.agh.edu.pl/vol27/1/art/opuscula_math_2706.pdf |
Summary: | In this article, we present a multivariate two-layer feedforward neural networks that approximate continuous functions defined on \([0,1]^d\). We show that the \(L_1\) error of approximation is asymptotically proportional to the modulus of continuity of the underlying function taken at \(\sqrt{d}/n\), where \(n\) is the number of function values used. |
---|---|
ISSN: | 1232-9274 |