It’s hydrogeology but not as we know it: Sub-seafloor groundwater flow driven by thermal gradients
Groundwater flow beneath the oceans plays an important role for cooling the earth’s crust and geochemical cycles, yet it remains an understudied subject in hydrogeology. This contribution focuses on the circulation of seawater through basalt covered by deep-sea sediments in the equatorial northeast...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2018-01-01
|
Series: | E3S Web of Conferences |
Online Access: | https://doi.org/10.1051/e3sconf/20185400008 |
Summary: | Groundwater flow beneath the oceans plays an important role for cooling the earth’s crust and geochemical cycles, yet it remains an understudied subject in hydrogeology. This contribution focuses on the circulation of seawater through basalt covered by deep-sea sediments in the equatorial northeast Pacific Ocean. Numerical model simulations are used to infer the factors controlling the flow patterns that develop between basalt outcrops. The energy to drive the flow is derived from the crustal heat flux. It is found that the sediment thickness plays a key role in determining the development of hydrothermal siphons, i.e. the flow between two adjacent seamounts where one acts as a recharge point and the other as a discharge point for seawater. Amongst the various factors tested, the outcrop width was an important factor as well. |
---|---|
ISSN: | 2267-1242 |