Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer

Squeezing light into a nanometer gap offers strong light–matter interaction. Here, the authors develop a nanoelectromechanical system to dynamically control the gap of a plasmonic dimer at nanometer scale, enabling the realization of a light-intensity modulator that operates at high speed and with a...

Full description

Bibliographic Details
Main Authors: Jung-Hwan Song, Søren Raza, Jorik van de Groep, Ju-Hyung Kang, Qitong Li, Pieter G. Kik, Mark L. Brongersma
Format: Article
Language:English
Published: Nature Publishing Group 2021-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-20273-2
id doaj-5b4d4f5e474547cbb2b01f8b2da77df0
record_format Article
spelling doaj-5b4d4f5e474547cbb2b01f8b2da77df02021-01-10T12:19:15ZengNature Publishing GroupNature Communications2041-17232021-01-011211710.1038/s41467-020-20273-2Nanoelectromechanical modulation of a strongly-coupled plasmonic dimerJung-Hwan Song0Søren Raza1Jorik van de Groep2Ju-Hyung Kang3Qitong Li4Pieter G. Kik5Mark L. Brongersma6Geballe Laboratory for Advanced Materials, Stanford UniversityDepartment of Physics, Technical University of DenmarkGeballe Laboratory for Advanced Materials, Stanford UniversityGeballe Laboratory for Advanced Materials, Stanford UniversityGeballe Laboratory for Advanced Materials, Stanford UniversityCREOL, The College of Optics and Photonics, University of Central FloridaGeballe Laboratory for Advanced Materials, Stanford UniversitySqueezing light into a nanometer gap offers strong light–matter interaction. Here, the authors develop a nanoelectromechanical system to dynamically control the gap of a plasmonic dimer at nanometer scale, enabling the realization of a light-intensity modulator that operates at high speed and with a low power consumption.https://doi.org/10.1038/s41467-020-20273-2
collection DOAJ
language English
format Article
sources DOAJ
author Jung-Hwan Song
Søren Raza
Jorik van de Groep
Ju-Hyung Kang
Qitong Li
Pieter G. Kik
Mark L. Brongersma
spellingShingle Jung-Hwan Song
Søren Raza
Jorik van de Groep
Ju-Hyung Kang
Qitong Li
Pieter G. Kik
Mark L. Brongersma
Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
Nature Communications
author_facet Jung-Hwan Song
Søren Raza
Jorik van de Groep
Ju-Hyung Kang
Qitong Li
Pieter G. Kik
Mark L. Brongersma
author_sort Jung-Hwan Song
title Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
title_short Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
title_full Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
title_fullStr Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
title_full_unstemmed Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
title_sort nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2021-01-01
description Squeezing light into a nanometer gap offers strong light–matter interaction. Here, the authors develop a nanoelectromechanical system to dynamically control the gap of a plasmonic dimer at nanometer scale, enabling the realization of a light-intensity modulator that operates at high speed and with a low power consumption.
url https://doi.org/10.1038/s41467-020-20273-2
work_keys_str_mv AT junghwansong nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer
AT sørenraza nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer
AT jorikvandegroep nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer
AT juhyungkang nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer
AT qitongli nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer
AT pietergkik nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer
AT marklbrongersma nanoelectromechanicalmodulationofastronglycoupledplasmonicdimer
_version_ 1714951747258023936