Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer
Squeezing light into a nanometer gap offers strong light–matter interaction. Here, the authors develop a nanoelectromechanical system to dynamically control the gap of a plasmonic dimer at nanometer scale, enabling the realization of a light-intensity modulator that operates at high speed and with a...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-020-20273-2 |
Summary: | Squeezing light into a nanometer gap offers strong light–matter interaction. Here, the authors develop a nanoelectromechanical system to dynamically control the gap of a plasmonic dimer at nanometer scale, enabling the realization of a light-intensity modulator that operates at high speed and with a low power consumption. |
---|---|
ISSN: | 2041-1723 |