Boundary problem for the singular heat equation

The scheme for solving of a mixed problem with general boundary conditions is proposed for a heat equation \[a(x)\frac{\partial T}{\partial \tau}= \frac{\partial}{\partial x} \left(\lambda(x)\frac{\partial T}{\partial x}\right)\] with coefficient $a(x)$ that is thegeneralized derivative of a functio...

Full description

Bibliographic Details
Main Author: O.V. Makhnei
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2017-06-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/1450
id doaj-5b43d314ff2f49e4ba2ea335da9a07aa
record_format Article
spelling doaj-5b43d314ff2f49e4ba2ea335da9a07aa2020-11-25T03:20:58ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102017-06-0191869110.15330/cmp.9.1.86-911450Boundary problem for the singular heat equationO.V. Makhnei0Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, UkraineThe scheme for solving of a mixed problem with general boundary conditions is proposed for a heat equation \[a(x)\frac{\partial T}{\partial \tau}= \frac{\partial}{\partial x} \left(\lambda(x)\frac{\partial T}{\partial x}\right)\] with coefficient $a(x)$ that is thegeneralized derivative of a function of bounded variation, $\lambda(x)>0$, $\lambda^{-1}(x)$ is a bounded and measurable function. The boundary conditions have the form $$\left\{ \begin{array}{l}p_{11}T(0,\tau)+p_{12}T^{[1]}_x (0,\tau)+ q_{11}T(l,\tau)+q_{12}T^{[1]}_x (l,\tau)= \psi_1(\tau),\\p_{21}T(0,\tau)+p_{22}T^{[1]}_x (0,\tau)+ q_{21}T(l,\tau)+q_{22}T^{[1]}_x (l,\tau)= \psi_2(\tau),\end{array}\right.$$ where by $T^{[1]}_x (x,\tau)$ we denote the quasiderivative $\lambda(x)\frac{\partial T}{\partial x}$. A solution of this problem seek by thereduction method in the form of sum of two functions $T(x,\tau)=u(x,\tau)+v(x,\tau)$. This method allows to reduce solving of proposed problem to solving oftwo problems: a quasistationary boundary problem with initialand boundary conditions for the search of the function $u(x,\tau)$ and a mixed problem with zero boundaryconditions for some inhomogeneous equation with an unknown function $v(x,\tau)$. The first of these problems is solved through the introduction of the quasiderivative. Fourier method andexpansions in eigenfunctions of some boundary value problem forthe second-order quasidifferential equation $(\lambda(x)X'(x))'+ \omega a(x)X(x)=0$ are used for solving of the second problem. The function $v(x,\tau)$ is represented as a series in eigenfunctions of this boundary value problem. The results can be used in the investigation process of heat transfer in a multilayer plate.https://journals.pnu.edu.ua/index.php/cmp/article/view/1450boundary problemquasiderivativeeigenfunctionsfourier method
collection DOAJ
language English
format Article
sources DOAJ
author O.V. Makhnei
spellingShingle O.V. Makhnei
Boundary problem for the singular heat equation
Karpatsʹkì Matematičnì Publìkacìï
boundary problem
quasiderivative
eigenfunctions
fourier method
author_facet O.V. Makhnei
author_sort O.V. Makhnei
title Boundary problem for the singular heat equation
title_short Boundary problem for the singular heat equation
title_full Boundary problem for the singular heat equation
title_fullStr Boundary problem for the singular heat equation
title_full_unstemmed Boundary problem for the singular heat equation
title_sort boundary problem for the singular heat equation
publisher Vasyl Stefanyk Precarpathian National University
series Karpatsʹkì Matematičnì Publìkacìï
issn 2075-9827
2313-0210
publishDate 2017-06-01
description The scheme for solving of a mixed problem with general boundary conditions is proposed for a heat equation \[a(x)\frac{\partial T}{\partial \tau}= \frac{\partial}{\partial x} \left(\lambda(x)\frac{\partial T}{\partial x}\right)\] with coefficient $a(x)$ that is thegeneralized derivative of a function of bounded variation, $\lambda(x)>0$, $\lambda^{-1}(x)$ is a bounded and measurable function. The boundary conditions have the form $$\left\{ \begin{array}{l}p_{11}T(0,\tau)+p_{12}T^{[1]}_x (0,\tau)+ q_{11}T(l,\tau)+q_{12}T^{[1]}_x (l,\tau)= \psi_1(\tau),\\p_{21}T(0,\tau)+p_{22}T^{[1]}_x (0,\tau)+ q_{21}T(l,\tau)+q_{22}T^{[1]}_x (l,\tau)= \psi_2(\tau),\end{array}\right.$$ where by $T^{[1]}_x (x,\tau)$ we denote the quasiderivative $\lambda(x)\frac{\partial T}{\partial x}$. A solution of this problem seek by thereduction method in the form of sum of two functions $T(x,\tau)=u(x,\tau)+v(x,\tau)$. This method allows to reduce solving of proposed problem to solving oftwo problems: a quasistationary boundary problem with initialand boundary conditions for the search of the function $u(x,\tau)$ and a mixed problem with zero boundaryconditions for some inhomogeneous equation with an unknown function $v(x,\tau)$. The first of these problems is solved through the introduction of the quasiderivative. Fourier method andexpansions in eigenfunctions of some boundary value problem forthe second-order quasidifferential equation $(\lambda(x)X'(x))'+ \omega a(x)X(x)=0$ are used for solving of the second problem. The function $v(x,\tau)$ is represented as a series in eigenfunctions of this boundary value problem. The results can be used in the investigation process of heat transfer in a multilayer plate.
topic boundary problem
quasiderivative
eigenfunctions
fourier method
url https://journals.pnu.edu.ua/index.php/cmp/article/view/1450
work_keys_str_mv AT ovmakhnei boundaryproblemforthesingularheatequation
_version_ 1724615628383322112