ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS

The data of traffic accident can be processed into information that is important for Police Department. Those important information researched is to analyze the traffic accident data to find out is there any link between the occurrence of an accident to a certain brand of vehicle. This research imp...

Full description

Bibliographic Details
Main Author: Agus Sasmito Aribowo
Format: Article
Language:Indonesian
Published: Universitas Pembangunan Nasional "Veteran" Yogyakarta 2015-04-01
Series:Telematika
Subjects:
Online Access:http://fajar.upnyk.ac.id/index.php/telematika/article/view/458
id doaj-5b244284c1b3499abf7004d6afc01baf
record_format Article
spelling doaj-5b244284c1b3499abf7004d6afc01baf2020-11-25T00:49:20ZindUniversitas Pembangunan Nasional "Veteran" YogyakartaTelematika1829-667X2460-90212015-04-0182403ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTASAgus Sasmito Aribowo0Prodi Teknik Informatika UPN “Veteran” YogyakartaThe data of traffic accident can be processed into information that is important for Police Department. Those important information researched is to analyze the traffic accident data to find out is there any link between the occurrence of an accident to a certain brand of vehicle. This research implementing data mining method to process the data traffic accident by using data mining techniques called Apriori Method. Apriori Method is used to identify a pattern of accidents based on brand, type of vehicles, and the vehicle’s color. The results are used to estimate whether there is any correlation between the occurrences of a traffic accident to a particular brand. The result can help the Police Department to find out whether there is any correlation between the occurrence of traffic accidents to the brand, type and the color of vehicle.http://fajar.upnyk.ac.id/index.php/telematika/article/view/458rule based classification, apriori, brand loyalty, traffic accident
collection DOAJ
language Indonesian
format Article
sources DOAJ
author Agus Sasmito Aribowo
spellingShingle Agus Sasmito Aribowo
ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS
Telematika
rule based classification, apriori, brand loyalty, traffic accident
author_facet Agus Sasmito Aribowo
author_sort Agus Sasmito Aribowo
title ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS
title_short ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS
title_full ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS
title_fullStr ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS
title_full_unstemmed ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS
title_sort analisa asosiatif data mining untuk mengetahui pola kecelakaan lalu lintas
publisher Universitas Pembangunan Nasional "Veteran" Yogyakarta
series Telematika
issn 1829-667X
2460-9021
publishDate 2015-04-01
description The data of traffic accident can be processed into information that is important for Police Department. Those important information researched is to analyze the traffic accident data to find out is there any link between the occurrence of an accident to a certain brand of vehicle. This research implementing data mining method to process the data traffic accident by using data mining techniques called Apriori Method. Apriori Method is used to identify a pattern of accidents based on brand, type of vehicles, and the vehicle’s color. The results are used to estimate whether there is any correlation between the occurrences of a traffic accident to a particular brand. The result can help the Police Department to find out whether there is any correlation between the occurrence of traffic accidents to the brand, type and the color of vehicle.
topic rule based classification, apriori, brand loyalty, traffic accident
url http://fajar.upnyk.ac.id/index.php/telematika/article/view/458
work_keys_str_mv AT agussasmitoaribowo analisaasosiatifdatamininguntukmengetahuipolakecelakaanlalulintas
_version_ 1715917852615114752