ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS
The data of traffic accident can be processed into information that is important for Police Department. Those important information researched is to analyze the traffic accident data to find out is there any link between the occurrence of an accident to a certain brand of vehicle. This research imp...
Main Author: | |
---|---|
Format: | Article |
Language: | Indonesian |
Published: |
Universitas Pembangunan Nasional "Veteran" Yogyakarta
2015-04-01
|
Series: | Telematika |
Subjects: | |
Online Access: | http://fajar.upnyk.ac.id/index.php/telematika/article/view/458 |
id |
doaj-5b244284c1b3499abf7004d6afc01baf |
---|---|
record_format |
Article |
spelling |
doaj-5b244284c1b3499abf7004d6afc01baf2020-11-25T00:49:20ZindUniversitas Pembangunan Nasional "Veteran" YogyakartaTelematika1829-667X2460-90212015-04-0182403ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTASAgus Sasmito Aribowo0Prodi Teknik Informatika UPN “Veteran” YogyakartaThe data of traffic accident can be processed into information that is important for Police Department. Those important information researched is to analyze the traffic accident data to find out is there any link between the occurrence of an accident to a certain brand of vehicle. This research implementing data mining method to process the data traffic accident by using data mining techniques called Apriori Method. Apriori Method is used to identify a pattern of accidents based on brand, type of vehicles, and the vehicle’s color. The results are used to estimate whether there is any correlation between the occurrences of a traffic accident to a particular brand. The result can help the Police Department to find out whether there is any correlation between the occurrence of traffic accidents to the brand, type and the color of vehicle.http://fajar.upnyk.ac.id/index.php/telematika/article/view/458rule based classification, apriori, brand loyalty, traffic accident |
collection |
DOAJ |
language |
Indonesian |
format |
Article |
sources |
DOAJ |
author |
Agus Sasmito Aribowo |
spellingShingle |
Agus Sasmito Aribowo ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS Telematika rule based classification, apriori, brand loyalty, traffic accident |
author_facet |
Agus Sasmito Aribowo |
author_sort |
Agus Sasmito Aribowo |
title |
ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS |
title_short |
ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS |
title_full |
ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS |
title_fullStr |
ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS |
title_full_unstemmed |
ANALISA ASOSIATIF DATA MINING UNTUK MENGETAHUI POLA KECELAKAAN LALU LINTAS |
title_sort |
analisa asosiatif data mining untuk mengetahui pola kecelakaan lalu lintas |
publisher |
Universitas Pembangunan Nasional "Veteran" Yogyakarta |
series |
Telematika |
issn |
1829-667X 2460-9021 |
publishDate |
2015-04-01 |
description |
The data of traffic accident can be processed into information that is important for Police Department. Those important information researched is to analyze the traffic accident data to find out is there any link between the occurrence of an accident to a certain brand of vehicle.
This research implementing data mining method to process the data traffic accident by using data mining techniques called Apriori Method. Apriori Method is used to identify a pattern of accidents based on brand, type of vehicles, and the vehicle’s color. The results are used to estimate whether there is any correlation between the occurrences of a traffic accident to a particular brand.
The result can help the Police Department to find out whether there is any correlation between the occurrence of traffic accidents to the brand, type and the color of vehicle. |
topic |
rule based classification, apriori, brand loyalty, traffic accident |
url |
http://fajar.upnyk.ac.id/index.php/telematika/article/view/458 |
work_keys_str_mv |
AT agussasmitoaribowo analisaasosiatifdatamininguntukmengetahuipolakecelakaanlalulintas |
_version_ |
1715917852615114752 |