Controlling and synchronizing a fractional-order chaotic system using stability theory of a time-varying fractional-order system.
Control and synchronization of fractional-order chaotic systems have attracted wide attention due to their numerous potential applications. To get suitable control method and parameters for fractional-order chaotic systems, the stability analysis of time-varying fractional-order systems should be di...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5877833?pdf=render |
Summary: | Control and synchronization of fractional-order chaotic systems have attracted wide attention due to their numerous potential applications. To get suitable control method and parameters for fractional-order chaotic systems, the stability analysis of time-varying fractional-order systems should be discussed in the first place. Therefore, this paper analyzes the stability of the time-varying fractional-order systems and presents a stability theorem for the system with the order 0<α<1. This theorem is a sufficient condition which can discriminate the stability of time-varying systems conveniently. Feedback controllers are designed for control and synchronization of the fractional-order Lü chaotic system. The simulation results demonstrate the effectiveness of the proposed theorem. |
---|---|
ISSN: | 1932-6203 |