Two-Dimensional Iterative Processing for DAB Receivers Based on Trellis-Decomposition

We investigate iterative trellis decoding techniques for DAB, with the objective of gaining from processing 2D-blocks in an OFDM scheme, that is, blocks based on the time and frequency dimension, and from trellis decomposition. Trellis-decomposition methods allow us to estimate the unknown channel p...

Full description

Bibliographic Details
Main Authors: Wim J. van Houtum, Frans M. J. Willems
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2012/394809
id doaj-5b11f92ffcd346f781ebb86092c31c4c
record_format Article
spelling doaj-5b11f92ffcd346f781ebb86092c31c4c2021-07-02T02:53:38ZengHindawi LimitedJournal of Electrical and Computer Engineering2090-01472090-01552012-01-01201210.1155/2012/394809394809Two-Dimensional Iterative Processing for DAB Receivers Based on Trellis-DecompositionWim J. van Houtum0Frans M. J. Willems1Catena Radio Design, Science Park Eindhoven, Ekkersrijt 5228, 5692 EG Son en Breugel, The NetherlandsDepartment of Electrical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, Postbus 513, 5600 MB Eindhoven, The NetherlandsWe investigate iterative trellis decoding techniques for DAB, with the objective of gaining from processing 2D-blocks in an OFDM scheme, that is, blocks based on the time and frequency dimension, and from trellis decomposition. Trellis-decomposition methods allow us to estimate the unknown channel phase since this phase relates to the sub-trellises. We will determine a-posteriori sub-trellis probabilities, and use these probabilities for weighting the a-posteriori symbol probabilities resulting from all the sub-trellises. Alternatively we can determine a dominant sub-trellis and use the a-posteriori symbol probabilities corresponding to this dominant sub-trellis. This dominant sub-trellis approach results in a significant complexity reduction. We will investigate both iterative and non-iterative methods. The advantage of non-iterative methods is that their forwardbackward procedures are extremely simple; however, also their gain of 0.7 dB, relative to two-symbol differential detection (2SDD) at a BER of 10-4, is modest. Iterative procedures lead to the significantly larger gain of 3.7 dB at a BER of 10-4 for five iterations, where a part of this gain comes from 2D processing. Simulations of our iterative approach applied to the TU-6 (COST207) channel show that we get an improvement of 2.4 dB at a Doppler frequency of 10 Hz.http://dx.doi.org/10.1155/2012/394809
collection DOAJ
language English
format Article
sources DOAJ
author Wim J. van Houtum
Frans M. J. Willems
spellingShingle Wim J. van Houtum
Frans M. J. Willems
Two-Dimensional Iterative Processing for DAB Receivers Based on Trellis-Decomposition
Journal of Electrical and Computer Engineering
author_facet Wim J. van Houtum
Frans M. J. Willems
author_sort Wim J. van Houtum
title Two-Dimensional Iterative Processing for DAB Receivers Based on Trellis-Decomposition
title_short Two-Dimensional Iterative Processing for DAB Receivers Based on Trellis-Decomposition
title_full Two-Dimensional Iterative Processing for DAB Receivers Based on Trellis-Decomposition
title_fullStr Two-Dimensional Iterative Processing for DAB Receivers Based on Trellis-Decomposition
title_full_unstemmed Two-Dimensional Iterative Processing for DAB Receivers Based on Trellis-Decomposition
title_sort two-dimensional iterative processing for dab receivers based on trellis-decomposition
publisher Hindawi Limited
series Journal of Electrical and Computer Engineering
issn 2090-0147
2090-0155
publishDate 2012-01-01
description We investigate iterative trellis decoding techniques for DAB, with the objective of gaining from processing 2D-blocks in an OFDM scheme, that is, blocks based on the time and frequency dimension, and from trellis decomposition. Trellis-decomposition methods allow us to estimate the unknown channel phase since this phase relates to the sub-trellises. We will determine a-posteriori sub-trellis probabilities, and use these probabilities for weighting the a-posteriori symbol probabilities resulting from all the sub-trellises. Alternatively we can determine a dominant sub-trellis and use the a-posteriori symbol probabilities corresponding to this dominant sub-trellis. This dominant sub-trellis approach results in a significant complexity reduction. We will investigate both iterative and non-iterative methods. The advantage of non-iterative methods is that their forwardbackward procedures are extremely simple; however, also their gain of 0.7 dB, relative to two-symbol differential detection (2SDD) at a BER of 10-4, is modest. Iterative procedures lead to the significantly larger gain of 3.7 dB at a BER of 10-4 for five iterations, where a part of this gain comes from 2D processing. Simulations of our iterative approach applied to the TU-6 (COST207) channel show that we get an improvement of 2.4 dB at a Doppler frequency of 10 Hz.
url http://dx.doi.org/10.1155/2012/394809
work_keys_str_mv AT wimjvanhoutum twodimensionaliterativeprocessingfordabreceiversbasedontrellisdecomposition
AT fransmjwillems twodimensionaliterativeprocessingfordabreceiversbasedontrellisdecomposition
_version_ 1721342553105629184