On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions

Abstract In this paper, we introduce the concepts of map T $\mathcal {T}$ and interval-valued T $\mathcal {T}$ -convex, and give some basic properties. Further, we extend fractional Hermite–Hadamard inequalities in the case of T $\mathcal {T}$ -convex and Ostrowski type inequalities for interval-val...

Full description

Bibliographic Details
Main Authors: Zehao Sha, Guoju Ye, Dafang Zhao, Wei Liu
Format: Article
Language:English
Published: SpringerOpen 2020-10-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-020-03004-1
id doaj-5aece50ca1964315aab0e68efb152c11
record_format Article
spelling doaj-5aece50ca1964315aab0e68efb152c112020-11-25T02:49:52ZengSpringerOpenAdvances in Difference Equations1687-18472020-10-012020111510.1186/s13662-020-03004-1On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functionsZehao Sha0Guoju Ye1Dafang Zhao2Wei Liu3College of Science, Hohai UniversityCollege of Science, Hohai UniversitySchool of Mathematics and Statistics, Hubei Normal UniversityCollege of Science, Hohai UniversityAbstract In this paper, we introduce the concepts of map T $\mathcal {T}$ and interval-valued T $\mathcal {T}$ -convex, and give some basic properties. Further, we extend fractional Hermite–Hadamard inequalities in the case of T $\mathcal {T}$ -convex and Ostrowski type inequalities for interval-valued functions. Several examples are presented to illustrate the results.http://link.springer.com/article/10.1186/s13662-020-03004-1Interval-valued functionsT $\mathcal {T}$ -convexHermite–Hadamard type inequalitiesOstrowski type inequalities
collection DOAJ
language English
format Article
sources DOAJ
author Zehao Sha
Guoju Ye
Dafang Zhao
Wei Liu
spellingShingle Zehao Sha
Guoju Ye
Dafang Zhao
Wei Liu
On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions
Advances in Difference Equations
Interval-valued functions
T $\mathcal {T}$ -convex
Hermite–Hadamard type inequalities
Ostrowski type inequalities
author_facet Zehao Sha
Guoju Ye
Dafang Zhao
Wei Liu
author_sort Zehao Sha
title On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions
title_short On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions
title_full On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions
title_fullStr On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions
title_full_unstemmed On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions
title_sort on some hermite–hadamard type inequalities for t $\mathcal{t}$ -convex interval-valued functions
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1847
publishDate 2020-10-01
description Abstract In this paper, we introduce the concepts of map T $\mathcal {T}$ and interval-valued T $\mathcal {T}$ -convex, and give some basic properties. Further, we extend fractional Hermite–Hadamard inequalities in the case of T $\mathcal {T}$ -convex and Ostrowski type inequalities for interval-valued functions. Several examples are presented to illustrate the results.
topic Interval-valued functions
T $\mathcal {T}$ -convex
Hermite–Hadamard type inequalities
Ostrowski type inequalities
url http://link.springer.com/article/10.1186/s13662-020-03004-1
work_keys_str_mv AT zehaosha onsomehermitehadamardtypeinequalitiesfortmathcaltconvexintervalvaluedfunctions
AT guojuye onsomehermitehadamardtypeinequalitiesfortmathcaltconvexintervalvaluedfunctions
AT dafangzhao onsomehermitehadamardtypeinequalitiesfortmathcaltconvexintervalvaluedfunctions
AT weiliu onsomehermitehadamardtypeinequalitiesfortmathcaltconvexintervalvaluedfunctions
_version_ 1724741744125280256