On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions
Abstract In this paper, we introduce the concepts of map T $\mathcal {T}$ and interval-valued T $\mathcal {T}$ -convex, and give some basic properties. Further, we extend fractional Hermite–Hadamard inequalities in the case of T $\mathcal {T}$ -convex and Ostrowski type inequalities for interval-val...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-10-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13662-020-03004-1 |
id |
doaj-5aece50ca1964315aab0e68efb152c11 |
---|---|
record_format |
Article |
spelling |
doaj-5aece50ca1964315aab0e68efb152c112020-11-25T02:49:52ZengSpringerOpenAdvances in Difference Equations1687-18472020-10-012020111510.1186/s13662-020-03004-1On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functionsZehao Sha0Guoju Ye1Dafang Zhao2Wei Liu3College of Science, Hohai UniversityCollege of Science, Hohai UniversitySchool of Mathematics and Statistics, Hubei Normal UniversityCollege of Science, Hohai UniversityAbstract In this paper, we introduce the concepts of map T $\mathcal {T}$ and interval-valued T $\mathcal {T}$ -convex, and give some basic properties. Further, we extend fractional Hermite–Hadamard inequalities in the case of T $\mathcal {T}$ -convex and Ostrowski type inequalities for interval-valued functions. Several examples are presented to illustrate the results.http://link.springer.com/article/10.1186/s13662-020-03004-1Interval-valued functionsT $\mathcal {T}$ -convexHermite–Hadamard type inequalitiesOstrowski type inequalities |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zehao Sha Guoju Ye Dafang Zhao Wei Liu |
spellingShingle |
Zehao Sha Guoju Ye Dafang Zhao Wei Liu On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions Advances in Difference Equations Interval-valued functions T $\mathcal {T}$ -convex Hermite–Hadamard type inequalities Ostrowski type inequalities |
author_facet |
Zehao Sha Guoju Ye Dafang Zhao Wei Liu |
author_sort |
Zehao Sha |
title |
On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions |
title_short |
On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions |
title_full |
On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions |
title_fullStr |
On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions |
title_full_unstemmed |
On some Hermite–Hadamard type inequalities for T $\mathcal{T}$ -convex interval-valued functions |
title_sort |
on some hermite–hadamard type inequalities for t $\mathcal{t}$ -convex interval-valued functions |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1847 |
publishDate |
2020-10-01 |
description |
Abstract In this paper, we introduce the concepts of map T $\mathcal {T}$ and interval-valued T $\mathcal {T}$ -convex, and give some basic properties. Further, we extend fractional Hermite–Hadamard inequalities in the case of T $\mathcal {T}$ -convex and Ostrowski type inequalities for interval-valued functions. Several examples are presented to illustrate the results. |
topic |
Interval-valued functions T $\mathcal {T}$ -convex Hermite–Hadamard type inequalities Ostrowski type inequalities |
url |
http://link.springer.com/article/10.1186/s13662-020-03004-1 |
work_keys_str_mv |
AT zehaosha onsomehermitehadamardtypeinequalitiesfortmathcaltconvexintervalvaluedfunctions AT guojuye onsomehermitehadamardtypeinequalitiesfortmathcaltconvexintervalvaluedfunctions AT dafangzhao onsomehermitehadamardtypeinequalitiesfortmathcaltconvexintervalvaluedfunctions AT weiliu onsomehermitehadamardtypeinequalitiesfortmathcaltconvexintervalvaluedfunctions |
_version_ |
1724741744125280256 |