Coenzyme Coupling Boosts Charge Transport through Single Bioactive Enzyme Junctions

Summary: Oxidation of formate to CO2 is catalyzed via the donation of electrons from formate dehydrogenase (FDH) to nicotinamide adenine dinucleotide (NAD+), and thus the charge transport characteristics of FDH become essential but remain unexplored. Here, we investigated the charge transport throug...

Full description

Bibliographic Details
Main Authors: Xiaoyan Zhuang, Aihui Zhang, Siyao Qiu, Chun Tang, Shiqiang Zhao, Hongchun Li, Yonghui Zhang, Yali Wang, Binju Wang, Baishan Fang, Wenjing Hong
Format: Article
Language:English
Published: Elsevier 2020-04-01
Series:iScience
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004220301851
Description
Summary:Summary: Oxidation of formate to CO2 is catalyzed via the donation of electrons from formate dehydrogenase (FDH) to nicotinamide adenine dinucleotide (NAD+), and thus the charge transport characteristics of FDH become essential but remain unexplored. Here, we investigated the charge transport through single-enzyme junctions of FDH using the scanning tunneling microscope break junction technique (STM-BJ). We found that the coupling of NAD+ with FDH boosts the charge transport by ∼2,100%, and the single-enzyme conductance highly correlates with the enzyme activity. The combined flicker noise analysis demonstrated the switching of the coenzyme-mediated charge transport pathway and supported by the significantly reduced HOMO-LUMO gap from calculations. Site-specific mutagenesis analysis demonstrated that FDH-NAD+ stably combined own higher bioactivity and boosts charge transport, and the coupling has been optimized via the natural selection. Our work provides evidence of hydrogen bond coupling in bioactivity but also bridges the charge transport through single-enzyme junctions and enzyme activities. : Analytical Chemistry; Biotechnology; Molecular Biology Subject Areas: Analytical Chemistry, Biotechnology, Molecular Biology
ISSN:2589-0042