Co-nanoencapsulation of magnetic nanoparticles and selol for breast tumor treatment: in vitro evaluation of cytotoxicity and magnetohyperthermia efficacy
Luciana LC Estevanato,1 Jaqueline R Da Silva,1 André M Falqueiro,2 Ewa Mosiniewicz-Szablewska,3 Piotr Suchocki,4,5 Antônio C Tedesco,2 Paulo C Morais,6 Zulmira GM Lacava11Instituto de Ciências Biológicas, Universidade de Brasíl...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2012-10-01
|
Series: | International Journal of Nanomedicine |
Online Access: | http://www.dovepress.com/co-nanoencapsulation-of-magnetic-nanoparticles-and-selol-for-breast-tu-a11196 |
Summary: | Luciana LC Estevanato,1 Jaqueline R Da Silva,1 André M Falqueiro,2 Ewa Mosiniewicz-Szablewska,3 Piotr Suchocki,4,5 Antônio C Tedesco,2 Paulo C Morais,6 Zulmira GM Lacava11Instituto de Ciências Biológicas, Universidade de Brasília, Brasília DF, Brazil; 2Departamento de Química, Laboratório de Fotobiologia e Fotomedicina, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP, Brazil; 3Institute of Physics, Polish Academy of Sciences, Warsaw, Poland; 4Department of Drug Analysis, Warsaw Medical University, Warsaw, Poland; 5Department of Pharmaceutical Chemistry, National Medicines Institute, Warsaw, Poland; 6Instituto de Física, Universidade de Brasília, Brasília DF, BrazilAbstract: Antitumor activities have been described in selol, a hydrophobic mixture of molecules containing selenium in their structure, and also in maghemite magnetic nanoparticles (MNPs). Both selol and MNPs were co-encapsulated within poly(lactic-co-glycolic acid) (PLGA) nanocapsules for therapeutic purposes. The PLGA-nanocapsules loaded with MNPs and selol were labeled MSE-NC and characterized by transmission and scanning electron microscopy, electrophoretic mobility, photon correlation spectroscopy, presenting a monodisperse profile, and positive charge. The antitumor effect of MSE-NC was evaluated using normal (MCF-10A) and neoplastic (4T1 and MCF-7) breast cell lines. Nanocapsules containing only MNPs or selol were used as control. MTT assay showed that the cytotoxicity induced by MSE-NC was dose and time dependent. Normal cells were less affected than tumor cells. Cell death occurred mainly by apoptosis. Further exposure of MSE-NC treated neoplastic breast cells to an alternating magnetic field increased the antitumor effect of MSE-NC. It was concluded that selol-loaded magnetic PLGA-nanocapsules (MSE-NC) represent an effective magnetic material platform to promote magnetohyperthermia and thus a potential system for antitumor therapy.Keywords: PLGA-nanocapsule, cancer, maghemite nanoparticle, MTT, drug delivery, selenium |
---|---|
ISSN: | 1176-9114 1178-2013 |