An optimum design on rollers containing the groove with changeable inner diameter based on response surface methodology

In order to realize the precision plastic forming of the revolving body component with changeable wall thickness, a kind of roller containing grooves with changeable inner diameter is put forward, as the forming mould of the technology of rolling-extrusion. Specifically, first, the arc length of the...

Full description

Bibliographic Details
Main Authors: Xi Zhao, Zhimin Zhang, Yong Xue
Format: Article
Language:English
Published: SAGE Publishing 2016-05-01
Series:Advances in Mechanical Engineering
Online Access:https://doi.org/10.1177/1687814016651796
Description
Summary:In order to realize the precision plastic forming of the revolving body component with changeable wall thickness, a kind of roller containing grooves with changeable inner diameter is put forward, as the forming mould of the technology of rolling-extrusion. Specifically, first, the arc length of the groove in the roller is designed according to the prediction on the forward slip value during the process of forming, to make accurate control of the actual length of the forming segments; then, to obtain better parameters of the roller structure, a second-order response surface model combining finite element numerical simulation and response surface methodology was put forward, taking the factor of forming uniformity as evaluation index. The result of the experiment shows that, for the formed component, not only the size can meet the needs but also each mechanical property index can be greatly improved, which verify the rationality of the forward slip model and the structural parameter of the optimum model based on the response surface methodology.
ISSN:1687-8140