Temperature Gradient Method for Alleviating Bonding-Induced Warpage in a High-Precision Capacitive MEMS Accelerometer

Capacitive MEMS accelerometers with area-variable periodic-electrode displacement transducers found wide applications in disaster monitoring, resource exploration and inertial navigation. The bonding-induced warpage, due to the difference in the coefficients of thermal expansion of the bonded slices...

Full description

Bibliographic Details
Main Authors: Dandan Liu, Huafeng Liu, Jinquan Liu, Fangjing Hu, Ji Fan, Wenjie Wu, Liangcheng Tu
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/4/1186
Description
Summary:Capacitive MEMS accelerometers with area-variable periodic-electrode displacement transducers found wide applications in disaster monitoring, resource exploration and inertial navigation. The bonding-induced warpage, due to the difference in the coefficients of thermal expansion of the bonded slices, has a negative influence on the precise control of the interelectrode spacing that is essential to the sensitivity of accelerometers. In this work, we propose the theory, simulation and experiment of a method that can alleviate both the stress and the warpage by applying different bonding temperature on the bonded slices. A quasi-zero warpage is achieved experimentally, proving the feasibility of the method. As a benefit of the flat surface, the spacing of the capacitive displacement transducer can be precisely controlled, improving the self-noise of the accelerometer to 6 ng/√Hz @0.07 Hz, which is about two times lower than that of the accelerometer using a uniform-temperature bonding process.
ISSN:1424-8220