Inversion of SAR data in active volcanic areas by optimization techniques

The inversion problem concerns the identification of parameters of a volcanic source causing observable changes in ground deformation data recorded in volcanic areas. In particular, this paper deals with the inversion of ground deformation measured by using SAR (Synthetic Aperture Radar) interferome...

Full description

Bibliographic Details
Main Authors: G. Nunnari, G. Puglisi, F. Guglielmino
Format: Article
Language:English
Published: Copernicus Publications 2005-01-01
Series:Nonlinear Processes in Geophysics
Online Access:http://www.nonlin-processes-geophys.net/12/863/2005/npg-12-863-2005.pdf
Description
Summary:The inversion problem concerns the identification of parameters of a volcanic source causing observable changes in ground deformation data recorded in volcanic areas. In particular, this paper deals with the inversion of ground deformation measured by using SAR (Synthetic Aperture Radar) interferometry and an inversion approach formulated in terms of an optimization problem is proposed. Based on this inversion scheme, it is shown that the problem of inverting ground deformation data in terms of a single source, of Mogi or Okada type, is numerically well conditioned. In the paper, two case studies of inverting actual SAR data recorded on Mt. Etna during eruptions occurring in 1998 and 2001 are investigated, showing the suitability of the proposed technique.
ISSN:1023-5809
1607-7946