Parameter tuning patterns for random graph coloring with quantum annealing.
Quantum annealing is a combinatorial optimization technique inspired by quantum mechanics. Here we show that a spin model for the k-coloring of large dense random graphs can be field tuned so that its acceptance ratio diverges during Monte Carlo quantum annealing, until a ground state is reached. We...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2012-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3498173?pdf=render |
Summary: | Quantum annealing is a combinatorial optimization technique inspired by quantum mechanics. Here we show that a spin model for the k-coloring of large dense random graphs can be field tuned so that its acceptance ratio diverges during Monte Carlo quantum annealing, until a ground state is reached. We also find that simulations exhibiting such a diverging acceptance ratio are generally more effective than those tuned to the more conventional pattern of a declining and/or stagnating acceptance ratio. This observation facilitates the discovery of solutions to several well-known benchmark k-coloring instances, some of which have been open for almost two decades. |
---|---|
ISSN: | 1932-6203 |